
. I I

V

COLOR COMPUTER 3
EXTENDED

BASIC

Color Computer 3 System Software
© 1982, 1986 Microsoft and

and Microware Systems Corporation.

Licensed to Tandy Corporation
All Rights Reserved.

All portions of this software are copyrighted and are the proprietary and trade secret information
of Tandy Corporation and/or its licensor. Use, reproduction or publication of any portion of
this material without the prior written authorization by Tandy Corporation is strictly prohibited.

Color Computer 3 Extended BASIC
© 1986, Tandy Corporation.

All Rights Reserved.

Reproduction or use. without express written permission from Tandy Corporation and/or its
licensor, of any portion of this manual is prohibited. While reasonable efforts have been taken
in the preparation of this manual to assure its accuracy, Tandy Corporation assumes no liability

resulting from any errors or omissions in this manual, or from the use of the information contained
herein.

Tandy and Radio Shack are registered trademarks of Tandy Corporation.

10 9 8 7 6 5 4 3 2 1

Hello Newcomers . . .
If you don't know a thing about computers, relax-this manual is for you. Using it, you
"program" your computer with its own language-Extended BASIC. You'll start by:

• Composing music

• Creating light shows

• Playing games

• Painting pictures

If you're eager to get down to business, be patient. Having fun is the fastest way to learn.

So, spend some time with your computer. Type whatever you want Play with it. Feel at easel
You have an amazing tool to command .

. . . And Welcome Back Oldtimers
Welcome back to the Color BASIC family! You might already know tho origmal Color BASIC
language. You might also know tho expanded Extended Color BASIC language.

The language described in this book- Extended Color BASIC Version 2-is a greater expansion
of Color BASIC and Extended Color BASIC. Using Extended Color BASIC Version 2, you can

• Draw pictures with nearly perfect detail, using hundreds and thousands of screen
positions.

• Color pictures with turquoise, indigo, violet, and dozens of other exciting colors.

• Create special effects, such as mixing text with high resolution graphics.

• View text, and program in 32, 40 or 80 columns.

The table below lists the new commands provided by Extended Color BASIC Version 2.

Chapter

7

8

19

24

30

31

38

39

Command

PALETTE RGB

WIDTH, LOCATE, ATTR, (SHIFTI® (for true lowercase)

PALETTE, PALETTE CMP, PALETTE RGB

BUTTON

PALETTE

HSCREEN, HCIRCLE, HCLS, HCOLOR, HDRAW, HLINE,
HPAINT, HRESET, HSET, HPOINT, HPRINT, PALETTE

HBUFF, HPUT, HGET

HSTAT

ERLIN, ERNO, ONERR, ONBRK

CONTENTS

PART 1 / THE BASICS

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Meet Your Computer
PRINT SOUND CLS PALETTE RGB SHI FT 7.r

Your Computer Never Forgets .
(... unless you turn it ofL)
String Variables LET

A Simple Program.
NEW INPUT GOTO RUN
PRINT. PRINT; LIST

A Loop
FOR/NEXT

A Loop Within a Loop
Nested FOR/NEXT SHIFT @J

Decisions, Decisions .
IF/THEN END AND/OR

The Screen
PRINT@ WIDTH [SHIFTJ(]J LOCATE ATTR

Colors
PALETTE

Random Chance .
RND

Reading .
DATA READ RESTORE INT

Help With Arithmetic .
GOSUB RETURN REM ON GOSUB ON GOTO
Exponential Notation

Help With Words .
LEN LEFT$ RIGHT$ MID$ CLEAR

Saving Programs.
CLOAD CSAVE SKIPF

Editing Programs
EDIT DEL RENUM

A Pop Quiz
INKEY$ VAL

3

. . 13

. 17

.. 25

.. 31

.37

.43

.51

.55

.59

.65

....... 71

. 77

.81

.87

iii

Contents

iv

PART 2 / HAVING FUN
16

17

18

19

Music.
PLAY

Pictures .
SET RESET POINT

The Talking Computer Teacher
AUDIO MOTOR

Joysticks .
JOYSTK BUTTON

95

.............................. 1m

... 109

. 115

PART 3 I DRAMATIC IMAGES
20

21

22

23

24

25

26

27

28

29

Let's Get to the Point
PSET PRESET PPOINT

Hold That Line
LINE COLOR

The Silver Screen
SCREEN PCLS

Minding Your Pmodes
PMODE

A Different Use of Color
PALETTE

Finding the Right Page .
PCLEAR PMODE PCOPY

Going in Circles
CIRCLE

The Big Brush-Off
PAINT

Drawing Shape,;
DRAW

The Display We11t 1l1at Army
GET PUT

....................... 121

..................... 125

........ 129

.. 133

. 137

. .. 141

...... 147

.. 153

.......................... 155

.... 163

PART 4 / THE BIG PICTURE
30

31

Thousands of Dots
INKEY$ VAL
HCOLOR HDRAW HLINE HPAINT
HRESET HSET HPOINT HPRINT

Graphics Storage
HBUFF HPUT HGET

.... 169

... 173

Contents

PART 5 / GETTING DOWN TO BUSINESS
32 Storing Data ... 179

OPEN CLOSE PRINT #-1 INPUT #-1 EOF

33 Numeric Arrays 183
DIM

34 String Arrays189
LLIST PRINT #-2

35 Multidimensional Arrays .. 193

PART 6 / BACK TO BASICS
36 Numbers ... 201

SOR SIN COS TAN ATN LOG EXP FIX DEF FN SGN ABS

37 Strings 207
STRING$ INSTR MID$ STR$ ASC CHR$

38 In and Out .215
LINE INPUT PRINT USING POS HSTAT TIMER

39 Bugs . 225
STOP CONT MEM TRON TROFF ERL\N ERNO ONERR ONBRK

40 Machine Language ...
DEFUSR VARPTR PEEK POKE EXEC
HEX$ LPEEK LPOKE

. ... 231

V

Contents

vi

PART 7 / ODDS AND ENDS
Suggested Answers to Do-It-Yourself Programs .

Sample Programs

Worksheets
Low Resolution Text Screens
High Resolution Text Screens
Low Resolution Graphics Screens
High Resolution Graphics Screens

BASIC Character Codes
Codes 0-127/Low and High Resolution
Codes 128-255/Low Resolution
Codes 128-255/High Resolution

Color Codes

Palette Slots .

BASIC Colors ..

BASIC Musical Tones

Mathematical Formulas

Derived Functions .

Valid Input Ranges

Memory Map ..

Line Printer Variables

ROM Routines ..

BASIC Error Messages .

Error Codes

BASIC Summary ..

Index

.239

.257

.281

.289

.295

.297

.299

.303

.305

.307

.309

. 311

... 313

. .. 315

. ... 319

. . 321

. .323

.... 341

PART 1 / THE BASICS

In this part, you'll learn how to program. But before you start, put yourself in the right frame
of mind.

• Feel comfortable. You don't have to understand everything at one time.

• Try out your own ideas. You don't have to do everything our way.

• Have fun and enjoy your color computer!

Ready? Turn the page and begin

1 / MEET YOUR COMPUTER

This chapter and the next introduce you to your computer-the way ii works, some of its talents,
and even a couple of its quirks. By the time you reach Chapter 3, you'll be ready to program.

This is How to Start
(Power Up)
Connect your computer to a television set or to a video monitor. Instructions on how to do
this are in the introduction manual, lntroductng Your Color Computer 3, that comes with your
color computer.

Then:

1. Turn on the television set or video monitor.

2. If you use a television set, select Channel 3 or 4 and set the antenna switch to COMPUTER.

3. Turn on your computer. The POWER button is on the left rear side of your keyboard.

The BASIC startup message appears on youI screen:

EXTENDED COLOR BASIC v. r

COPR. 1982, 1986 BY TANDY
UNDER LICENSE FROM MICROSOFT
AND MICROWARE SYSTEMS CORP.

(v.r is the number specifying which version and release of BASIC you have.)

If the BASIC startup message does not appear on your screen

• Turn off your computer. Wait 30 seconds, and turn on your computer again.

• Adjust the brightness and contrast on your television set or video monitor.

• Check all the connections.

If the screen still does not show the BASIC startup message, refer to "Troubleshooting and
Maintenance" in your introduction manual.

When the screen shows the BASIC startup message. you're ready to begin.

Using the Keyboard
(The (s HI FT)C[) Keys)
Experiment with the keyboard, and type whatever you want. You are now in the uppercase­
only mode. This means that all the characters you type appear on your screen as uppercase
(capital) letters. The letters show as dark characters on a light colored screen.

Hold down the r SHTF...IJ key and press uD. Then, release boH1 keys, and type some more
characters. Now, the characters appear in reversed colors (light characters on a dark
background). If the characters do not appear in reversed colors, press (SHIFT OJ again. Be
sure to hold down lSJ:t) FT] before pressing (]J.

3

1 I Meet Your Computer

4

By pressing I SH I FT l®, you enter the upper/lowercase mode. The lowercase letters you type
appear in reversed colors, and the uppercase letters you type appear in normal colors.

To type an uppercase letter, use the I SHI FT I key, just as you would on a typewriter. Hold
down I SH I FT I, and type the letter you want in uppercase letters.

Now, return to the uppercase-only mode by pressing I SHIFT I® again. You will find it easier
to be in the uppercase-only mode when you enter commands.

Entering a Command
(The PRINT Command)
Press the I ENTER l key. Don't worry about anything but the last line of type on your screen.
It says

OK

OK is the computer's prompt. It's telling you, "OK, I'm ready when you are.,

Give the computer your first command. Type this exactly as it is below:

PRINT "HI, I'M YOUR COLOR COMPUTER"

When you reach the right side of your screen, keep typing. The last part of the message appears
on the next line.

This should be on your screen:

OK
PRINT "HI, I'M YOUR COLOR COMPUT
ER"

1 I Meet Your Computer

Now check your line. Did you put the quotation marks in correctly? Did you type the word
PRINT in uppercase letters? (The computer does not understand commands typed in
lowercase.)

If you made a mistake. simply press the G key, and the last character you typed disappears.
Press it again, and the next to the last character disappears (and so on). Now, type the correct
characters

Ready? Press the , ENTER I key and watch. Your screen looks like this

OK
PRINT "HI, I'M YOUR COLOR COMPUT
ER II

HI, I'M YOUR COLOR COMPUTER
OK

Your computer followed your instructions by printing the message you have 1n quotes on your
screen

Entering Numbers
{Numbers v Strings)
Have the computer print another message. Type

PRINT "2"

Press ·ENTER•. The computer prints your message.

Try another one

PR I NT 11 2 + 2" CENTER 1

5

1 I Meet Your Computer

6

The computer prints

2 + 2

You probably expect much more than an electronic mimic ... maybe some answers! Give
your computer some numbers without the quotation marks. Type:

PRINT 2 + 2 (ENTER 1

This time the computer prints the answer:

4

The quotation marks obviously have a meaning Experiment with them some more. Type each
of these lines:

P R I NT 5 + 4 'E-NTER '

PRINT "5+4" IENTERi

PRINT "5+4 EQUALS" 5+4 [E::IIITER;
PR INT 6 / 2 11 I s 6 /2 11 lEN_TERl

PR I NT "8 / 2" LE_NTE_RI

PRINT 8/2 (ENT_EJf

Any conclusions?

fllJLES ON SlHINGS v NLJMRtRS

l he comrutcr sec'.; everyttiir1g you type as stnngs or numbers. If it':; ir1 quotes, it's
a string. The computer sees 1t exactly as it is. If it's riot in quotes it's a number
The computer calculates 11 as a numerical problem

1 I Meet Your Computer

A Color Calculator
(+ , - , I, *, and CO)
Any arithmetic problem is a snap for the computer. Do some long division. Type

PRINT "3862 DIVIDED BY 13.2 IS" 3862/13.2 .ENTER

Do a multiplication problem

PR I NT 1589 * 23 (ENTER I

Notice that the computer uses an asterisk (*) for multiplication

You can raise a number to a power by using the Cl) key. To print 3 to the power of 2, type

PR I NT 3 :L 2 ,_ENTER i

Try a few more problems:

PRINT "1 5 * 2 = 11 1 5 * 2 (ENTER 1

PRINT 18 * 18 "IS THE SQUARE OF 18" C_fNTER

PR I NT 3 3 . 3 3 I 2 2 . 8 2 [ENTER:

Now it's your turn Write two commands that print these two problems and their answers:

157/13.2
95 ' 43 =

DO-IT-YOURSELF COMMANDS

If you use the correct commands, this is what the computer prints on your screen:

1 5 7 / 1 3 . 2 = 11 . 8 93 93 9 4
95*43=4085

Ready for the answers? The correct commands are

PRINT "157 / 13.2 = "157/13.2
PRINT "95 * 43 =11 95*43

7

1 I Meet Your Computer

8

Making Mistakes
(Error Messages)
Type this line, deliberately misspelling the word PRINT as "PRIINT"

p R I INT II H I II (ENTER I

The screen shows:

?SN ERROR

7 SN ERROR stands for syntax error. This is the computer's way of saying, "PRIINT 1s not
1n my vocabulary. I have no idea what you want me to do." Any time you get Hie ?SN error.
you probably rnade a typing error.

I he computer also giv0,s you error messages when it does understand what you want it to
do. but it feels you're asking it to do something that is illogical or impossible f-or instance, lry this

PRINT 5 / 0 (ENT_ER!

I he screen shows:

7 /0 ERROR

which rneans, "I can't d1v1de by 0-that's impossit1l0,I"

If you get an error message you don't understand. flip to the Appendix. We ve listed all the
error messages there and wliat probably caused them.

A Screen of a Different Color
(The CLS Command)
So far, all you've seen your computer do is display characters on a green screen. But your
color computer has other colors too. Type:

C LS 8 [ENTER;

Now, your screen is orange with a green stripe at the top. Your command told the computer
to clear the screen and display Color 8-orange.

But why the green stripe? The computer must use the current background color whenever
it displays characters. Later, you'll learn how to change the background color, but for now,
the background color is green. Type some more characters. The computer uses a green
background for them also.

Press (ENTER l to get the OK prompt. Now type

CLS4(ENTER)

1 I Meet Your Computer

You see a green stripe at the top, as before, and the rest of your screen is one of two colors.

• If you have a television set or a composite monitor, the rest of your screen is red.
(Throughout this book, we refer to these displays as CMP monitors.)

• If you have an RGB monitor, the rest of your screen is black.

Some colors, such as Color 4, look different on a CMP monitor than they look on an RGB
monitor.

You can produce nine colors with the CLS command. To see them. enter CLS with any number
in the range O to 8. (If you enter a number outside the range O to 8. the screen shows the
error message MICROSOFT.)

Now. try CLS without a number:

C LS (ENTER;

When you don't use a number, the computer assumes you want to display the current
background color which, at this point, is green.

The Standard Colors
(The PALETTE Command)
I he ni11e colors that you c;:in produce with th0. CLS co1T11112rnd or1 a CMP monitor are the color
computer's Sl3ndarci colors. In rnost of this book. we u;;e trie st,:incJ;ird colors.

The standard colors are

CLS Standard
Nurnbcr Color

0 Black
Green

2 Yellow
3 Blue
4 Red
5 Buff
6 Cyan
7 Magenta
8 Orange

If you have an RGB monitor, you can produce the standard colors by entering the PALETTE
RGB command. Type:

PA LETT E R GB : ENTERJ

Now. you can use the CLS command to produce the standard colors on your RGB monitor.
For example type

C L S 4 :~N'(ER ·,

Before you entered the PALETTE RGB command, CLS4 made your screen black. Now, CLS4
makes your screen red.

From this point on, remember: If you have an RGB monitor and want to produce the standard
colors, you must enter the PALETTE RGB command each time you turn on your computer.

9

1 I Meet Your Computer

10

Computer Sound Off-One, Two ...
(The SOUND Command)
Type this

SOUND 1,100 'ENTEFf

If you don't hear anything, turn up the volume and try again.

What you're hearing is six seconds of the lowest tone the computer can hum. How about
the highest tone? Type

SOUND 255,100 .E.NT.ER

The second number tells the computer how long to hum the tone. You can use any number
in the range 1 to 255. Try 1

SOUND 128,1 _ENTER

l he computer hums the torw fur ;,hrn 1\ Gi 100ths of a second Try 1 O

SOUND 128,10 ENTER

The computer sounds the tone for 6/10th'" of a second.

Try different number cornbir1atior1s. but keep each number 1n the range 1 to 255. (If you enter
a number outside the range 1 to 255. the screen shows error message ? F c ERROR.)

1 I Meet Your Computer

Say It in Its Own Words
(Command Syntaxes)
In this chapter you have learned about four commands-PRINT. SOUND, CLS, and PALETTE.
In learning about these commands, you have learned the formats or the syntaxes that you
need to use when you enter them.

Later, you might forget the syntax for a certain command. For this reason, each time we
introduce a new command, we include the command's syntax. The syntax is in a box so it
is easy to find

In many of the syntaxes, we use italicized words or abbreviations to represent information
that you need to provide. For example, in the PRINT syntax, message represents an actual
message (such as ' HI, l'M YOUR COLOR COMPUTER") that you need to provide.

The syntax for PRINT is:

PR INT message Prints message on the display. The message can be a string (in which
case BASIC prints the string exactly as it is), or a number (in which case BASIC prints
the number's value),

The syntax for CLS is:

CL s c Clears your text screen and displays Color c on it. c is a number from O to
8 representing the color you want displayed. If you omit c, BASIC displays the current
background color.

The syntax for SOUND is

so UN D n 1 n2 Sounds the specified tone (n 1) for a specified period of time (n2). n 1
1s a number in the range 1-255. n2 is a number in the range 1-255.

The syntax for PALETTE is:

PALETTE R GB Sets the computer to display the standard colors on an RGB monitor.

COMMANDS

PRINT
SOUND

CLS
PALETTE

Learned in Chapter 1

KEYBOARD
CHARACTERS

EJ
(J:_NTERl

CS-HIFTJCE

CONCEPTS

string v numbers
error messages

syntax

A refresher like this is at the end of each chapter. It helps you make sure you didn't miss
anything.

11

2 / YOUR COMPUTER
NEVER FORGETS
(... unless you turn it off ...)

One skill that makes your computer so powerful is its memory In this chapter, you learn how
to get the computer to remember any information you want.

This Is How It Works ...
(The LET Command)
Have the computer ''remember" the number 13. Type

A = 1 3 '.INTER;

Now. type whatever you want. When you're done, press . ENTER_'. See if the computer
remembers what A means by typing:

Your computer remembers that A is 13 as long as you have it on

A = 1 7 . 2 . ENiEfi)

Now, if you ask it to PRINT A, it prints 17.2.

or until you do this. Type:

You don t have to use the letter A. You can use any letter from A to Z In fact, you can use
any two letters from A to Z. Type:

B = 1 5 gNTERJ
C = 2 0 • ENTER'
BC = 2 5 , ENTEJlJ

Now, have the computer print all the numbers you asked it to remember. Type:

P R I N T A , B , C , B C lENTER I

13

2 I Your Computer Never Forgets

14

If you want the computer to remember a "string" of letters or numbers, use a letter with a
dollar sign ($). Type:

A$= "TRY TO"
B$ = "REMEMBER"
CS= "THIS, YOU"
BC$= "GREAT COMPUTER"

Then type:

PRINT A$, B$, C$, BC$~

Computer programmers have a name for all the letters you used: vanables. So far, you used
these variables:

NUMBERS

A 17.2
B 15
C 20
BC = 25

YOUR COMPUTERS MEMORY

CHARACTERS

A$ "TRY TO"
8$ "REMEMBER"
C$ "THIS, YOU"
BC$ = "GREAT COMPUTER"

Spot-check the above variables to see if the computer remembers the right information. For
instance, to see it BC still contains 25, type:

PRINT BC IE_N_JER

Think of variables as little box.es in which you car, store 111lormation. One set of boxes is for
strings; the other sci 1:; frn numbers. Each box has a label.

You can store ir1forrnatirn1 111 a variable or ch;HHJC the information that is already stored in
an existing variable by entering a simple commanci such as A= 5. This simple command 1s
actually called the LET command, but the color computer lets you omit the word LET.

The syntax for the LET command is:

LET vanable = value Assigns a value to a variable. You can omit the word LET and simply
type variable= value.

Note: Some versions of BASIC require that you include the word LET. With the color
computer, the word LET is optional.

2 I Your Computer Never Forgets

Rules, Rules, Rules
(The TM Error)
Whenever you store data into variables, you need to make sure you follow these rules.

RULES ON STORING DATA INTO VARIABLES

• Data in quotes is string data. You can store string data only in string variab/es(variables
with a $ sign).

• Data not in quotes is numeric data. You can store numeric data only in numeric
variables (variables without a $ sign).

As an example of what happens when you disobey these rules, type these four commands:

D ; "6" (ENTERJ

Z; "THIS IS STRING DATA" (ENTER]
D$; 6 [ENTER)

Z $; 1 2 (ENTER)

The computer responds to each of these commands with ? TM ERROR (Type-Mismatch Error).
This is because each of them attempts to store data into the wrong kind of variable.

• The first two commands attempt to store string data into numeric vmiables.

• Tlie second two commands attempt to store numeric data into string variables.

Type these comrm111Js, which the computm accepts

D$; ''6" (ENTER)

2$ = "THIS IS STRING DATA"~
D=6CENIE!D
Z = 1 2 (ENTER)

You've now added this to your computer's memory.

NUMBERS

0--+6
z-12

YOUR COMPUTER'S MEMORY

STRINGS

D$--+"6"
Z$-"THIS IS STRING DATA"

A New Kind of Arithmetic
(Using Numeric Variables)
Now, do something interesting with what you told the computer to remember. Type:

PRINTD*ZCENIEB:l

The computer prints the product of D times 2. (The computer remembers that D equals 6.)

15

2 I Your Computer Never Forgets

16

Try this line:

PRINTZID

l he computer prints the quotient of Z divided by D.

Would this work?

PR I NT D $ * 2 I ENTER l

Did you try it? You see ?TM ERROR. The computer cannot multiply string data

Cross out the commands below that the computer rejects:

EXERCISE WITH VARIABLES

F = 22.9999999
M '19.2"
DZ$= "REMEMBFR THIS FOR ME"
M$ 15

Z = F t F

Finished? These are the commands the computer accepts.

F = 22. 9999999
DZ$ = "REMEMBER THIS FOR ME"

Z = F + F

RULES ON VARIABLES

You can use any two characters from A to Z for a variable. The first character must
be a letter frorn A to Z The second can be a letter or c1 number. If you want to assign
string data to the variable. put a dollar sign atter the v:1nc1hle. Otherwise, the vm1ahlc
can hold only numeric data. String variables can store up to 249 characters.

Learned in Chapter 2
CONCEPTS

Variables
String v Numeric Variables

3 / A SIMPLE PROGRAM

You've learned some commands. Now, all you need to do is combine them into a program.

A Simple 1-Line Program
(The NEW and RUN Commands)
Type:

NEW [ENTER)

This command erases whatever might be in the computer's memory.

Now type this line. Be sure you type the number 10 first--thats important.

1 0 P R I N T II H I , I ' M YOU R C O LOR COM PU TE R 11 '.Ef.fT];}f

Did you press CENTER)? Nothing happened, did it? Nothing you can see, that is. You just wrote
your first program. Type:

RUN IENTERI

The computer runs your program. Tyre HUN c1gair, and again to your hcmt's content. The
computer runs your program any time you wisl1. as many times as you wish

In your first program, you used two new commands: NEW and RUN. Their syntaxes are:

NEW Clears memory.

RUN line numbers Runs the specified line numbers. line numbers is optional; if omitted,
the entire program runs.

17

3 I A Simple Program

18

And Now, A 2-Line Program
{The LIST Command)
Your first program works well; so add another line to it Type·

2¢ PRINT "WHAT IS YOUR NAME'.'" 1EN_T-ERJ

If you make a mistake in typing this line, or any other line, simply type trw line over again.

Now. type

L I S T :J;.NJE~R 1

The computer displays the entire program. Your screen shows.

1¢ PRINT "HI, I'M YOUR COLOR COMPUTER"
20 PRINT "WHAT IS YOUR NAME?"

The command that you used to display the program 1s the LIST command. Its syntax is

LI s T line numbers Displays the specified line numbers. Line numbers is optional; if
omitted, the entire program displays.

Entering Your Name
{The INPUT Command)
Run the program. Type·

R U N E~f:E_fC

The computer displays

HI, I'M YOUR COLOR COMPUTER
WHAT IS YOUR NAME?

What do you suppose would happen 1f you answer the computer's question? rry 1t

When you simply type your name, the computP.r doP.sn't understand what you mean In bet.
the computer can only understand what you mean when you talk to it in its own language.

Use a word the computer understands: INPUT. The syntax for INPUT is

INPUT "message"; vanab/e Prints your message; then, waits for you to input information
and labels that information as variable. Message 1s optional. If you use "message",
remember to use a semicolon after the "message"

Change Line 20 so it uses the word INPUT rather than PRINT. How do you change a program
line? Simply type 1t again using the same line number. Type

2 0 I N PUT "WHAT I S YOU R NAM E" ; A$ (E:_-_NJ}=R: 1

This tells the computer to

• PRINT "WHAT IS YOUR NAME".
• Wait for you to type some characters and press lJ-NTER ..

• Label the characters you type as A$

3 I A Simple Program

Add one more line to the program:

3 0 P R I N T II H I , 11 A$ (ENTER I

Now, list the program again to see if yours looks like ours. Type

LIST ENTER'

The program looks like this:

10 PRINT "HI, I'M YOUR COLOR COMPUTER"
20 INPUT "WHAT IS YOUR NAME?"; A$
30 PRINT "HI," A$

Can you guess what will happen when you run it? Try it

RUN , ENTl=8J

That worked well, didn't it? This is probably what happened when you ran the program
(depending on what you typed as your name)

HI, I'M YOUR COLOR COMPUTER
WHAT IS YOUR NAME? JANE
HI,JANE

RUf'J the progran1 aqain using differc:nt names. ror exar11plc

HI, I'M YOUR COLOR COMPUTER

WHAT IS YOUR NAME7 HUGO
HI,HUGO

Again and Again
(The GOTO Command)
By usinu another new command called GOTO-you ca11 ilave tile computer run the same
comn1ands over anci ovc:r. (30 l O's syntax is:

Go To line numtJer Goes to /me number.

Type this lir1e

40 GOTO 30

0000000000 G

o~o - 0 b. o-
0 O
00000000000

Now, run the program. The computer prints your name again and again without stopping.
GOTO tells the computer to go back to Line 30

10 PRINT "HI, I'M YOUR COLOR COMPUTER"
20 INPUT "WHAT IS YOUR NAME?"; A$
30 PRINT"HI,"A$
40 GOTO 30

19

3 I A Simple Program

20

Your program now runs perpetually. Each time it gets to Line 40, it goes back to Line 30.
We call this a loop. You can stop this endless loop in two ways:

• Hold down I SHTFTl and press C~). This pauses the program. Press any key to
continue the program.

• Press (BRE-AJ0. This ends the program.

Print Spacing
(The PRINT, and PRINT; Commands)
Press IBREAKJ to end the program.

You can make a big change simply by adding a comma or a semicolon to the PRINT command.
Try the comma first. Type Line 30 again, but with a comma at the end:

30 PRINT"HI,"A$,

Run the program. The computer displays everything in two columns.

Press BREA=K] and try the semicolon. Type

30 PRINT "HI," A$;

Now, run the program You probably won't be c1blEi to tell what the program's doing until you
press I BREA-Kl See how the semicolon crams everything toqether?

RULES ON PRINT PUNCTUATION

This is what punctuation at the end of a PRINT line does:

• A comma makes the computer go to the next column. Use it to print in columns.

• A semicolon makes the computer stay where it is. Use it to pack what you print
together.

• No punctuillion makes the computer go to the next line. Use it to print in rows.

A Compact Program
(The Colon (:))
By now. you might assume that each new command you add to a program must begin on
a new line. Actually, you can combine several commands into one line using a colon (:) to
separate them.

For example, you could combine all four commands in the above program into one line. First,
change Line 10 so that it includes all four commands. Type:

10 PRINT "HI, I'M YOUR COLOR COMPUTER":INPUT "WHAT IS
YOUR NAME ? " ; A$: PR I NT " H I , " A$; I ENTER)

3 I A Simple Program

Then, delete Lines 20, 30, and 40, by typing:

20~
30~
40 IENTERI

Now, run the program. It should work the same way it did when it was three lines.

Combining commands conserves memory and is useful when you write a long program that
requires a large amount of memory. The problem with combining commands is that it makes
a program more difficult to read and understand. We want all the programs in this manual
to be easy to understand; so in most of this manual, we won't combine commands.

RULES ON ENTERING PROGRAM LINES

• A program line consists of one or more commands, separated by colons(:).

• A program line can contain as many commands as you want to include, providing
that the entire line has 249 characters or less.

Changing The Program
(Inserting, Deleting, and Changing Program Lines)
You may not realize it, but you now know three ways to change a program. Here's a summary:

• You can insert a program line by entering the line. BASIC will automatically insert
the line at the correct place in the program. All line numbers go in ascending numeric
sequence. For example, to insert Line 20 between lines 15 and 22, type:

2e PRINT "IT'S EASY TO CHANGE A PROGRAM"
IEITEE!J

• You can change a program line by entering the line over again. For example, to
change Line 20, type:

20 PRINT "SIMPLY TYPE THE LINE OVER AGAIN"
~

• You can delete a program line by entering only the line number. For example, to
delete Line 20, type:

20 ~

21

3 I A Simple Program

22

Color/Sound Demonstration
{An Example of a Program)
Want to play with color and sound some more? First, erase memory Type:

NEW [ENTEFlJ

Then, enter this program

10 PRINT "TO MAKE ME CHANGE MY TONE"
20 INPUT "ENTER A NUMBER FROM 1 TO 255"; T
30 SOUND T, 50
40 GOTO 10

Run the program to get a sample of the computer's tones.

What happens if you change Line 30 to:

30 SOUND 50, T

Hint: Look back in Chapter 1 wl1ere we talk about SOUND.

Know the answer? If you make the above change, the computer hums the same tone each
time, but for a different length of time

DO-IT YOURSELF PROGRAM

First, press (BREAKJ, then erase this program by typing NEW Now see if you can
write a program, similar to the one above, to make the computer show a certain color.
Remember, you can display nine colors with the CLS command, 0 through 8

This is our program

10 PRINT "TO MAKE ME CHANGE MY COLOR"
20 INPUT "TYPE A NUMBER BETWEEN 0 AND 8 11 ; T
30 CLST
40 GOTO 10

Add Polish to the Program
{The IF/THEN Command)
Pressing the I BREAKJ key is an abrupt way to stop the program. Why not have the computer
politely ask if you're ready to end?

Press r BREAK I to stop the program. Then change Line 40 to

40 INPUT "DO YOU WANT TO SEE ANOTHER COLOR?"; R$

Then, add this line

50 IFR$="YES"THEN20

Run the program. Type YES and the program keeps running. Type anything else and the
program ends.

3 I A Simple Program

This is what the program looks like now:

10 PRINT "TO MAKE ME CHANGE COLORS"
20 INPUT "TYPE A NUMBER BETWEEN 0 AND 8 11 ; T
30 CLST
40 INPUT "DO YOU WANT TO SEE ANOTHER COLOR"; R$
50 IF R$ = "YES" THEN 20

This is what the new lines do:

• Line 40 prints a question and tells the computer to stop and wait for an answer: R$.

• Line 50 tells the computer to go back to Line 20 If (and only iD your answer (R$)
is "yes." If not, the program ends, because it has no more lines.

COMMANDS

NFW
RUN
LIST

INPUT
GOTO
PRINT.
f"'RINT;

IF/1 HEN

Learned in Chapter 3

CONCEPT

Change llnRs
Insert linRs
LJnlete linRs
Combine commands
Create loops

KEYBOARD

I BR_E:_AK_i

i S_HJ_E_IJ ((<1! !

1__:_i

23

4 I A LOOP

In this chapter you experiment with computer sound effects. First. you need to use two new
commands, FOR and NEXT, to teach the computer to count

How to Count
{The FOR and NEXT Commands)
FOR and NEXT are two commands, but they are always used together. Their syntaxes are:

F o R variable= n 1 TO n2 STEP n3 Stores n 1 in van able and each time the computer
loops back to FOR, adds n3 to variable. STEP n3 Is optional 11 omitted, the computer
uses STEP 1.

NEXT vana/Jle If variable is less tha11 or oquol to n2. loops back to the correspondin[J
rOR command. Otherwise, BASIC proceeds to tho next conm:amJ.

These syntaxes might moke FOR a11cJ N[XT sounci compl1catecJ, ll1JI lhr:y me actually simpl0,
to use Type 1n !'JEW to 0,ras0, memory the11 typ(::

10 FORX=1TO10

20 PRINT"X="X
30 NEXT X

40 PRINT "I HAVE FINISHED COUNTING"

nun th0, program

25

4 I A Loop

26

Before trying to figure out what FOR and NEXT do, replace Line 1 O with each of the lines
below and run the program four more times.

10 FOR X = 1 TO 100
10 FORX=ST015
10 FORX=-2T02
10 FORX=20T024

FOfl and NFXT make the computer count. Look at the last version of the program:

10 FOR X = 20 TO 24
20 PRINT"X="X
30 NEXTX
40 PRINT "I HAVE FINISHED COUNTING"

Line 10 tells the computer the first number is 20 and the last number is 24. It uses X to label
all these numbers.

Line 30 tells the computer to keep going back to Line 1 O for the next number (the NEXT X)
until it reaches the last number (number 24).

Look at Line 20. Since Line 20 is between the FOR and NEXT lines, the computer prints the
value of X each time it counts:

X = 20
X = 21
X = 22
X = 23
X = 24

Add another line between FOR and NEXT

15 PRINT"· .. COUNTING ... ''

Run the program. Your computer executes any lines you choose to insert between FOR and
NEXT.

DOIT YOURSELF- 1--'HOGRAM 4-1

Write a program that makes the computer print your name 10 times.

Hint: The program must count to 10

DO-IT-YOURSELF PROGRAM 4-2

Write a program to print the multiplication tables for 9 (9 * 1 through 9 * 10).

Hint: PRINT 9*X is a perfectly legitimate command.

DO-IT-YOURSELF PROGRAM 4-3

Write a program that prints the multiplication tables for 9*1 through 9*25.

Hint: By adding a comma in the PRINT line, you can get all the problems and results
on your screen at once.

4 I A Loop

Finished? These are our programs:

Program 4-1

10 FORX=1T010

20 PRINT "THOMAS"

30 NEXT X

Program 4-2

10 FORX=1T010

20 PRINT "9*"X"="9*X

30 NEXT X

Program 4-3

10 FOR X = 1 TO 25

20 PR I NT "9*"X"="9*X,

30 NEXTX

Counting by Two's
(The STEP Option)
Now, have the computer count in a slightly different way, Erase your program by typing NEW
@TER Then, type this new program:

10 FORX=2T010STEP2

20 PRINT "X=" X

30 NEXT X

40 PRINT "I HAVE FINISHED COUNTING"

27

4 I A Loop

28

Run the program. Do you see what STEP 2 does? It makes the computer count by 2·s Line
10 tells the computer that

• The first X 1s 2

• The last X is 1 0

. AND STEP 2

• All the X's between 2 and 1 O are 2 apart (2, 4, 6, 8, 10). STEP 2 tells the computer
to add two to get each NEXT X.

To make the computer count by 3's. make all the X's 3 apart Try this for Line 10

10 FORX=3TOHSTEP3

Run the program. Your screen shows:

X = 3
X = 6
X = 9

Here are more rOfl . STEP lines 1t you want some more practice

10 FORX=5T050STEP5
10 FORX 10T01 STEP-1
10 FORX=1T020STEP4

You may be wondcrinCJ ilbout the proqram:; you r,m ill the first or tliis chaptr:r w1tl1nut usinq
STEP. If you omit STEP. the comp11ter assumes you moan STEP 1.

Counting the Sounds
(An Example of FOR/NEXT)
Now that you taui:,f1t Hw computm to count, you can add some sound. Erase your old proarnm
and type this

10FORX=1 T0255

20 PRINT "TONE II X
30 SOUND X, 1
40 NEXT X

This program makes the computer count from 1 to 255. Each time it counts a new number,
it does what Lines 20 and 30 tell it to do:

• Line 20 prints X. the current count.

• Line 30 soumJs X's tone

For example:

• The first time the computer gets to FOR, in Line 10, it makes X equal to 1

• Then, it goes to Line 20 and prints 1, the value of X.

• Line 30 has it sound tone #1.

• Then, it goes back to Line 10 and makes X equal to 2.

• It repeats this process until X = 255 or you press (BREAK:

4 I A Loop

What do you think the computer will do if you make this change to Line 10

10 FOR X = 255 TO 1 STEP -1

PROGRAMMING EXERCISE

Using STEP. change Line 10 so the computer sounds tones from

The bottom of its range to the top, humming every tenth note.

2 The top of its range to the bottom, humming every tent11 note.

3 The middle of its range to the top, humming every fifth note.

10 ---------------

10 -----------------

10 -------------------.~----

Ready for the ar1swors?

10 FOR X = 1 TO 255 STEP 10
10 FOR X = 255 TO 1 STEP -10
10 FORX=128T0255STEP5

OOIT YOLJHSELF PROGRAM 4 4

Now scP if you ca11 write 3 program thr1t makes the computer l,urn

tr·om the IJottom of its range to the toµ. and tr1en
2 frorn ll1e: tor of its ranqe back tu lhe hottom

The ar1swcr to this. and tile rernair1ing "l)o·ll·Yourself'' µruurarns ;-ire 1n tl,e back uf !his book

But Can It Sing?
Yes. In Chapter 11. you'll learn how to have the computer play your favorite songs

Learned in Chapter 4

COMMANDS

FOR ... TO ... STEP
NEXT

29

5 / A LOOP WITHIN A LOOP

Now that you know how to use FOR/NEXT, you can have the computer keep time. First, use
FOR/NEXT to set a timer pause. Then, use a nested FOR/NEXT to build a clock.

Setting a Timer Pause
(A Practical Use of FOR/NEXT)
Type:

10 FOR Z = 1 TO 460 * 2
20 NEXT Z
30 PRINT "I COUNTED TO 920"

Run the program. Be patient and wait a few seconds. Two seconds, to be precise. It takes
the computer two seconds to count to 920.

I ines 1 O and 20 set a timer pause. By making the computer count to 920, you keep the
computer busy for two seconds.

This is groundwork for a stopwatch. Erase the program, and type:

10 PRINT "HOW MANY SECONDS?"
20 INPUTS
30 FOR Z = 1 TO 460*S

40 NEXT Z
50 PRINTS" SECONDS ARE UPI! I"

Run the program. Enter the number of seconds you want timed

31

5 I A Loop Within A Loop

32

DO IT-YOURSELF PROGRAM 5-1

It would help 1f the stopwatch could sound some kind of alarm. Add lines to the end
of the program to give 1t an alarm.

A Loop Within a Loop
(Nested FOR/NEXT Commands)
Before making an actual clock you need to know how to use a FOR/NEXT loop within a
FOR/NEXT loop.

fype this new proqrcirn

10 FOR X = 1 TO 3
20 PRINT"X="X
30 FOR Y = 1 TO 2
40 PRINT, "Y=" y
50 NEXT Y
60 NEXT X

Hun it. This should t,e or-, 1uur screen:

X = 1
y = 1

y = 2
X = 2

y = 1

y = 2
X = 3

y = 1
y = 2

Programmers call thrs a nested loop. This is what the program does:

It counts X from 1 to 3 Each time it counts X

A. It prints the value of X

8. It counts Y from 1 to 2. Each time 11 counts Y, it prints the value of Y

C When it finishes counting the Y's, It goes back to count the next X (Line 1 O).

5 I A Loop Within A Loop

II. When it finishes counting the X's, the program ends.

As an alternate way of writing this program, you can combine Lines 50 and 60 into one line.

1 0 FORX=1TO3
20 PRINT"X="X
30 FOR Y = 1 TO 2
40 PRINT, "Y =" Y
50 NEXTY,X

Line 50 tells the computer to go back for the next Y, then. when it finishes counting all the
Y's. go back for the next X.

Regardless of which way you write the program, whenever you use nested loops, be sure
to close the inner loop before closing the outer loop.

Right Wrong

1 0 FOR X = 1 TO 3 1 0 FOR X = 1 TO 3

20 FOR Y = 1 TO 2 20 FOR Y = 1 TO 2

30 NEXT Y 30 NEXT X

40 NEXT X 40 NEXT Y

Right WrornJ

1 0 FOR X = 1 TO 3 1 0 FOR X = 1 TO 3

20 FORY=1T02 20 FOR Y = 1 TO 2

30 NEXTY,X 30 NEXT X, Y

A Computer Clock
{Example of Nested FOR/NEXT Commands)
fh1s example shows how to use nested FOR/NEXT commc1nds to make a computer clock I ype

1 0 FOR S = 0 TO 59
1 5 CL S

20 PRINTS

30 SOUND 150, 2

40 FOR T = 1 TO 390
50 NEXT T

60 NEXT S

70 PRINT "1 MINUTE IS UP"

33

5 I A Loop Within A Loop

34

Run the program. This Is what the program does:

I. It counts the seconds from 0 to 59 (Lines 1 0 and 60). Each time it counts one second

A. It clears the screen (Line 15).

B. It prints the second (Line 20)

C It sounds a tone (Line 30).

D It pauses long enough for one second to pass (Lines 40 and 50).

II When It finishes counting all the seconds from Oto 59, it prints a message that one minute
has passed (Line 70).

This Is a full-fledged clock:

1 0 FOR H = 0 TO 23

20 FOR M = 0 TO 59
30 FOR S = 0 TO 59
40 CLS
50 PRINT H":"M":"S
60 SOUND 150, 2
70 FOR T = 1 TO 375
80 NEXT T
90 NEXTS
100 NEXTM
110 NEXT H

When you run this progr;,m, the computer does this

It counts the hours from Oto 23 (Line 10). Each time It counts a new hour:

A It counts the minutes from 0 to 59 (Line 20). Each time 11 counts a new minute:

It counts the seconds from Oto 59 (Lines 30 and 90). Each time it counts a new
second:

a. It clears the screen (Line 40).

b. It prints the hour. minute, and second (Linc 50)

c. It sounds a tone (Line 60).

d. It pauses long enough for one second to pass (Lines 70 and 80).

2. When it finishes counting all the 59 seconds, It goes back to Line 20 for the
next minute (Line 100)

B When It finishes counting all the 59 minutes, It goes back to Line 1 0 for the next hour
(Line 110).

11. When it finishes counting all the hours (0-23), the program ends. (By adding another line.
120 GOTO 10, the clock runs perpetually.)

DO-IT-YOURSELF PROGRAM 5-2

Between Lines 90 and 100 you can add some tones to sound each minute. Wnte
a program with the added tones.

DO-IT-YOURSELF PROGRAM 5-3

Write a program that makes your computer show each of its nine colors for one second
eacn.

5 I A Loop Within A Loop

Listing Long Programs
(The LIST Command and the (s HI FT)(@J Keys)
Your programs are now getting so long that you need a better way of listing them than simply
typing LIST I ENTER·. Try these two methods:

• Specify only those lines that you want to see with the LIST command. For example,
to list only Lines 50-100, type:

LIST 50-100 IENTERJ

• Type LIST J=NTERl. Then, when the line that you want to see appears on the screen,
hold down (~ and press @l. This pauses the listing. You can press any key
to continue.

Learned in Chapter 5

COMMAND KEYBOARD

FOH/NE'XT lSHTFT i~,
STE'P

35

6 I DECISIONS, DECISIONS ...

Here's an easy decision for the computer:

• If you type ORANGE ... then make the screen orange.

or

• If you type BUFF ... then make the screen buff.

Easy enough? Then, have the computer do it.

Type this program:

10 PRINT "DO YOU WANT THE SCREEN ORANGE OR BUFF?"
20 INPUT C$
30 IF C$ = "ORANGE" THEN 100
40 IF C$ = "BUFF" THEN 200
100 CLSB
110 END
200 CLSS f;.) ''\),[.) ~

Run the program a few times. Try both ORANGE and BUFF as answers.

If you answer ORANGE ... then ...

1. Line 30 sends the computer to Line 100.

2. Line 100 turns your screen orange.

3. Line 110 ends the program. (If the computer gets to Line 110, it never makes it to Line 200.)

On the other hand .. .

If you answer BUFF ... then .

1. Line 40 sends the computer to Line 200.

2. Line 200 turns your screen buff.

3. Line 200 is the last line in the program, so the program ends.

37

6 I Decisions, Decisions ...

38

What happens if you answer with something besides ORANGE or BUFF? Run the program
again. This time, answer GREEN.

This makes the screen orange Do you know why?

It the condition 1s false, the computer ignores the THEN part of the line and proceeds to the
next program line

The command you used to have the computer make a decision is the IF/THEN command.
Here's the syntax for IF/THEN but don't expect to understand it all until you reach the end
of this chapter.

IF condition THEN commands ELSE commands Tests the condition. If its true. BASIC
executes the commands following THEN. It it's false, BASIC executes the commands
following ELSE or. if ELSE is omitted, does nothing.

You also used the END command. Its syntax is

END Ends program execution

Adding Another Level
{The ELSE Option and Nested IF/THEN Commands)
Take another look at the program below:

10 PRINT "DO YOU WANT THE SCREEN ORANGE OR BUFF?"
20 INPUT C$
30 IFC$="ORANGE"THEN10!/l
40 IFC$="BUFF"THEN2!/l!/l
10!/l C LSB
11!/l END
20!/l C LSS

By using ELSE, you can rephrase the decision in this way

If you type ORANGE

. then .

Make the screen orange

... or else ..

If you type BUFF

. then ..

Make the screen buff.

You can say all of this to the computer in one line. Erase Lines 30-200, and type this as a
new Line 30:

30 IF C$ = "ORANGE" THEN CLS8 ELSE IF C$= 11 BUFF" THEN

CLSS

6 I Decisions, Decisions ...

Run the program, and it works exactly as it did before.

• If C$ equals ''ORANGE. · the computer executes the command following THEN,
which is the CLSS command.

• If C$ does not equal ORANGE .. the computer executes the command following
ELSE, which is another IF/THEN command.

Note that Line 30 nests one IF/THEN commancJ wilhin another. You can nest as many IF/THEN
commands as you want. provided the µro9ram line dof:s not contain more than 21\9 characters
(the maximum line lengtt,) You can also tr?st 1/ something is not equal lo(<>), greater than
(>), less than (<). greater lhan or equill to (> =) or less than or equal to (< =) by using one
of tlw symbols in parentlic:;is instead of ~0 1n a test For example

30 IF A>B THEN 100

would go to 100 1/ A was gr·eater lhan B .

. . . And Still More Levels .
(Additional ELSE Clauses)
Suppose that in addition to what the computer did before, you want to tell the computer what
ELSE it should do if C$ does NOT equal ORANGE.

In other words, you want to add another ELSE clause to your dec1s1on

If you type ORANGE

... then .

Make the screen oran\c)e

or else

If you type GU1F

.. then

Make the screen ht1tl

.. or else.

PRINT "YOU MUST TYPE ORANGE OR BUFF"

To add this new ELSE clause. insert ELSE. followed by the PRINT command, at the end of
Line 30:

30 IF C$ = "ORANGE" THEN CLS8 ELSE IF C$="BUFF"
THEN CLSS ELSE PRINT "YOU MUST TYPE ORANGE OR BUFF"

Run the program. but this time. answer the computer's question with something besides orange
or buff. This response causes the computer to print the message "YOU MUST TYPE ORANGE
OR BUFF."

You can add as many ELSE clauses as you want. as long as the entire line does not contain
more than 249 characters

39

6 I Decisions, Decisions ...

40

. . . And Packing Even More Into a Decision
(The Colon (:))
To add even more power to the IF/THEN command you can have the computer carry out
any number of commands following each THEN or ELSE clause For example, assume you
want the computer to do this:

If you type ORANGE .

. . . then

Make the screen orange and go to Line 10

... or else ..

If you type BUFF .

. . . then

Make the screen buff and go to Line 1 0

.. or else ...

Print a message and go to Line 20

You can say all this in one line by using colons to separate eacl1 command. Change Line
30 to the following

30 IF C$ = "ORANGE" THEN CLS8:GOTO 10 ELSE IF
C$="BUFF" THEN CLSS:GOTO 10 ELSE PRINT "YOU MUST
TYPE EITHER ORANGE OR BUFF":GOTO 20

You can add as many commands as you wa11t to a THEN or ELSE clause, as long as the
line does not contain more than 249 characters.

A More Subtle Decision
(The AND and OR Conditions)
By using two more words, AND and OR. you can ask the computer to make a more subtle
decision. For example, suppose you want to write a program that tests to see whether a
candidate meets these J0b requirements

A degree in programming
AND

Experience In programming

Erase the memory. Then type and run this program

10 PR I NT "DO YOU HAVE--"
20 INPUT "A DEGREE IN PROGRAMMING"; D$

30 INPUT "EXPERIENCE IN PROGRAMMING"; E$
40 IF D$="YES" AND E$="YES" THEN PRINT "YOU'RE

HIRED I" ELSE PRINT "SORRY, WE CAN'T HIRE YOU"
50 GOTO 10

6 I Decisions, Decisions ...

If you respond to both questions with YES. the computer reaches this decision:

YOU'RE HIRED!

If, on the other hand. you respond to the first question with YES, but respond to the second
question with NO, the computer is forced to reach this decision:

SORRY, WE CAN'T HIRE YOU

Now, assume the requirements change so that AND becomes OR. The job requires:

A degree in programming
OR

Experience 1n programming

Change Line 40 so that AND becomes OR

40 IF 0$="YES" OR E$="YES" THEN PRINT "YOU'RE HIRED I"
ELSE PRINT "SORRY, WE CAN'T HIRE YOU"

Run the program. Respond to the first question with "YES" and the second question with
"NO"-just as you did before-and see the difference that one word can make:

YOU'RE HIREQI

Learned in Chapter 6

COMMANDS

IF/THEN/ELSE
END
ANO
OR

41

7 I THE SCREEN

So far, you've used only one screen. In this chapter, you learn to use a new screen (a big
screen) and four new commands.

If you have an RGB monitor, type PALETTE RGB I ENTER before starting this chapter. This
way your colors will agree with ours.

The Big Screen
(The WIDTH Command}
The screen you're using now is a 32 X 16 text screen. It can display text (alphanumeric
characters) in a format that is 32 columns (numbered 0-31) wide by 16 rows (numbered 0-15)
deep

0 1 2 3 4 5 6 7 8 9 H 11 12 13 1 1: 1 1 1B 1~ 2(21 2c 23 2 2! ?I 2-' c'e 2,1 J.'. 3,

10
f-+--+-++++-t-+-f-+-,f-+-1-+-++-+++-t-+-f---+--f-+-+-+-++-+-H

43

7 I The Screen

Your computer has two other text screens that you can use. One is 40 X 24:

44

1

'
3

'
5

7

IO

I

12

1J

'
5

'
7

'
9

0

1

'
3

0 1' 3 ' ' '

~

The other is 80 X 24:

" ''' 4 ~ & I ' " "'
,,, ,,,

"

'
'

' .
.
'
'"
" ..
n

..

.,

..
"
'"
"
~

"
"
"

7'

2'1?!<

9 1(111; I I 1' I I 18 lS 2(21 " ZJ ' ' I~' '" 1• 31 , 33 13'1~ 1• , "I~

~

~

',,, 1,11~? (3 311 1 1 ~ I ~ ~ l l '. l 1.'I I ii • ,,1 t .. ~ • • ~~~i• I .. ',11~,~ l5(~1S 5ll 1•q1 1111 I!(! 11t11111~1111 ,, 7 I 7 I

t

i

!
I

''

7 I The Screen

To change from screen to screen, use the WIDTH command. Its syntax is:

WIDTH 40, 80, or 32 changes to the 40 x 24 screen, the 80 x 24 screen, or the
32 x 16 screen; then clears the screen.

Use WIDTH to change to the 40 x 24 screen. Type:

W I D TH 4 0 [ENTER I

The 40 x 24 screen is different from the 32 x 16 screen. The border is green, rather than
black. The cursor is a blinking underline character, rather than a blinking block. The characters
are also different in size.

Change to the 80 x 24 screen. Type:

WIDTH 8 0 'ENTER 1

The 80 x 24 screen looks the same as the 40 x 24 screen, except the characters are thinner.
Move back to the 32 x 16 screen. Type:

WIDTH 32 IENTERJ

The 40 x 24 and 80 x 24 screens are both called high-resolution text screens. The 32 x 16
screen is called a /ow-resolution text screen.

Screen Positions
(The PRINT@ and LOCATE Commands)
You can position text on the low-resolution text screen with the PRINT@ command. You can
position text on the high-resolution text screen with the LOCATE command.

The syntax for PRINT @ is:

PRINT @ n, message Locates the cursor at Position n on the low-resolution text screen;
then rrints message.

The syIItax for LOCATE is

LO c ATE x,y Locates the cursor at Column x. Row y. The column can be 0-~9 for a
40 x 24 screen or 0-79 for an 80 x 24 screen. The row can be 0-23 for either screen.

This program, which we call "Magic." illustrates how PRINT @ works

10 WIDTH32
20 PRINT@ 230, "A SCREENFUL OF MAGIC"

45

7 I The Screen

46

When you run this program, BASIC moves to the low-resolution text screen, locates the cursor
at PosItIon 230 (224 + 6) and prints the message "A s c REEN Fu L o F MAG I c . 11

0

%

"'
'"" ,,
'

"'
1S6

'""
32 0

352

38 4

'
'
0

0 ' 2 3 4 5 6 7 8

• s

8 IC II I I I 1f 1! 1 1 ""

~~

•-~e-
C ' I I ' F u l 0 '

This version of Magic illustrates how LOCATE works:

10 WIDTH40
20 LOCATE 10,12
30 PRINT "A SCREENFUL OF MAGIC"

,,, ,. ' I 212 "" 3(31

' . G ' l

When you run this program, BASIC locates the cursor at Column 10, Row 12 and prints the
message "A s c REEN Fu L o F MAG I c . 11

' 1 1 . s ' ' 8 ',, 111; I I " ' ' ' ' 2121 '' 1 "" 1' ,, 31 313 3 3 3 3, 313 3!

;

2

1

4

5

'
7
~~ --
'
;

I • s ' R ' E N ' u l 0 ' ' . ' I C

3

5

6

7

8

'
0

'
]

7 I The Screen

PRINT@ and LOCATE work in a similar way, but there are two differences. First, PRINT@
locates the cursor at a PRINT@ position; LOCATE locates the cursor at a row, column position.
And second, PRINT @ prints a message; LOCATE does not print a message.

PRINT@ works only on the low-resolution text screen; LOCATE works only on a high-resolution
text screen. If you attempt to use these words on the wrong screens, you get an ? HP ERR o R.

Printing in Straight Lines
The PRINT TAB Command
TAB is very handy for printing things in nice, neat columns. It's syntax is:

PRINT TAB(n)

Moves the cursor to column ~ on the low- and high-resolution text screens.

Try using TAB. Type:

PRINT TAB(22);"HELLO 1 " CENT})~)

The computer moves to column twenty two and prints HELLOI. To prir1t n nice neat column
of numbers, enter this program

10 FOR Z = 500 TO 509
20 PRINTTAB(10);Z
30 NEXTZ

See how easy 1t 1s to print columns with TAB? l ry using it in your prowrarns now

Lowercase Letters
(The cs HI F_L)(0) Keys)
You can enter the upper/lowercase mode on both the low- and hiwh-resolutior1 screens.
However, the way that o::ich screen displays lowercase letters 1s d1tterent.

• The low-resolution text screen displays lowercase letters in reversed colors.

• The high-resolution text screen displays lowercase letters in true lowercase.

Try using the upper/lowercase mode on both screens. Hold down '._SHIFT; and press il5l
Then, retype Line 30 from the Magic Program. Use ISHIFTJ for the uppercase letters, as you
would on a normal typewriter. Type:

30 PRINT "A Screenful of Magic"

Type LIST 1 ENTER\ to list the program On the low-resolution text screen, Line 30 looks like this:

30 PRINT "A SCREENFUL OF MAGIC"

On the high-resolution text screen, Line 30 looks like this:

30 PRINT "A Screenful of Magic"

47

7 I The Screen

48

Run the program. Because of the WIDTH 40 line in Line 10 of the program, BASIC uses the
40 x 24 high-resolution text screen and displays this message on the screen

o 1 2 J 4 ~ o 1 e a , 11 12 12 1 1 ,t 1 11 1 ,,, 21 21 2 2 2 2t 2 21 21 3c a1 a: J: J 3~ 3f :i: 1 a11 3!

IO H-+t+-1-+-t-++++-+-+-H-+-++++-1-+-t--+-+-+-H-+-t-++++-+---t--JH-H

15

161---

17

18

22
H-++-+-+---+

?J,__......._

A S • • " " " t u l o I M a g , t

Return to the uppercase-only mode by holding down ~SHIFT) and pressing C!Ll

Colors
(The CLS Command}
You can use the CLS command on both the low- and high-resolution screens. The way tr1at
CLS works, however, 1s slightly different c1t each screen.

• On the low-resolution text screen, CLS clears the screen and displays a color.

• On the high-resolution text screen, CLS clears the screen. displays a color, and changes
the background color.

If you have an RGB monitor, type PALETTE R GB i ENTER I before reading further. This way
your colors will agree with ours.

Now, use CLS on both screens. First, move to the low-resolution text screen and enter CLS
with color number 8 (orange). Type

WI D TH 3 2 (ENTER

C LS 8 I ENTER I

You see a clear orange screen with a stnpe at the top. The stripe is green, the current
background color.

7 I The Screen

Now. move to the high-resolution text screen and enter the same command. Type:

1,1 I DTH 40 ~E}JTERJ

c Ls 8 rr'fn=-s::

You see simply a clear orange screen (no green stripe) The CLS command changed the
background color to orange as well.

Try some other background colors. You can use any number between 1 and 8.

To see how CLS works in a program, add Line 15 to our Magic Program

10 WIDTH 40
15 CLS3
20 LOCATE 10,12
30 PRINT "A Screenful of Magic"

Run the program. The computer shows "A Screenful of Magic on a blue background.

Dramatic Highlights
(The A TTR Command)
You can use a special command, ATTR, to highlight text on the high-resolution text screen.
ATTR works only on the high-resolution text screen 1t does not work on the low-resolution
text screen. Its syntax is:

A TT R c 1, c2, B, U Highlights text by setting the foreground to Color c 1 (0-7) and
the background to Color c2 (0-7). If you specify B. the text blinks. It you specify U,
the text 1s underlined.

To see how A TTR works, type:

A T T R 3 , 2 ·1:Nn:R7

Now. type some characters. The characters you type are h1ghl1ghted. The foreground color
is buff and the background color is blue.

Now. type

A TT R 2, 3, B ! ENTER]

The characters you type are highlighted in a different way. The foreground color is black,
the background color is red, and the characters are all blinking

To underline your characters, type:

A TT R 2 , 3, U (ENTER)

Try other combinations of foreground and background colors You can use any number in
the range 0- 7 for the foreground and background colors

49

7 I The Screen

50

This program uses A TTR to highlight the message produced by the Magic Program

10 WIDTH40

15 CLS4
20 LOCATE 10,12
25 ATTR 2,3,B

30 PRINT "A Screenful of Magic"

When you run the program, the words "A Screenful of Magic" are highlighted. The foreground
is black, the background is red, and the characters are all blinking.

Color Numbers
You might have noticed that the color numbers produce different colors depending on whether
you use them with CLS, ATTR as the foreground color, or ATTR as the background color.

For example, Color 3 produces:

• Blue, with CLS.

• Butt, with ATTR as tt1e foreground r.olor

• Rec1, with ATTR as tt1e background color.

Tile nexl chapter explains why this is so.

Learned in Chapter 7

COMMANDS

WIDTH
PRINT@
LOCATE
ATTR
CLS

KEYS

(_fil:!_IfTJ[Jl I

8 I COLORS

Your color computer can produce 64 colors. but so far. you ve used only nine of them. This
chapter shows how to use the many other colors that are available.

If you have an RGB monitor, be sure to type PALETTE R GB ENTER• every time you turn
on your computer This way your colors will agree with ours

Specifying Colors for 40/80 Column Text
(The Palette)
The color computer has a special area in memory called a palette The palette contains 16
slots. Each slot contains a color.

When you use a color number in a BASIC command you are specifying a palette slot. For
example. type

CLS3 ENTERJ

Your screen is now blue. This is because CLS3 spec1f1es Slot 2 and Slot 2 contains the code
for blue.

As another example, type:

AT TR 3 , 3 ENTER]

Then, type some characters. The foreground is buff and the background is red. This is because
A TTR 3.3 specifies Slot 11 tor the foreground and Slot 3 for the background Slot 11 contains
the code for buff. Slot 3 contains the code for red

Notice that the color numbers specify different slots. depending on whether you use them
with CLS. A TTR as the foreground color. or ATTR as the background color.

For example. Color 3 specifies:

• Slot 2. with CLS

• Slot 11. with A TTR as the foreground color

• Slot 3. with A TTR as the background color.

The following tables show which slot each color number specifies when used with CLS. A TTR
as the foreground color, and ATTR as the background color. They also show the standard
colors that are stored In each of these slots.

Table 8.1. CLS and the Palette

Color Number Palette Slot Standard Color

0 8 Black
1 0 Green
2 1 Yellow
3 2 Blue
4 3 Red
5 4 Buff
6 5 Cyan
7 6 Magenta
8 7 Orange

51

8 I Colors

52

Table 8.2. ATTA Foreground and the Palette

Color Number

0
1

2
3
4
5
6
7

Table 8.3.

Color Number

0
1
2
3
4
5
6
7

Palette Slot

8
9
10
11
12
13
14
15

A TTR Background and the Palette

Palette Slot

0
1
2
3
4
5
6
7

Using Nonstandard Colors
(The PALETTE Command)

Standard Color

Black
Green
Black
Buff
Black
Green
Black
Orange

Standard Color

Green
Yellow
Blue
Red
Buff
Cyan
Magenta
Orange

You can change the color stored In a palette slot with the PALETTE command The syntax
of PALETTE is

PALETTE slot, color code Stores a color code (0-63) into a palette slot (0-15)

For example, type

C LS3 (f:N_TER;

Your screen is now blue As you learned earlier, CLS3 specifies the color stored in Slot 2 and
Slot 2 contains the code for blue

Now, use PALETTE to store a different code in Slot 2. Type

PA LET TE 2, 2 •. ENTER.

The color of your screen instantly changes to green.

Try another code. Type

PALETTE 2, 1 4 ENTE[:

Again, the color of your screen changes.

Some codes produce different colors on a CMP monitor than they produce on an RGB monitor.
Try storing other codes in slot 2. You can use any code in the range O to 63.

8 I Colors

Name the Colors!
(Naming Colors for Future Reference)
Each display may produce somewhat different colors for each palette code. Type in and run
Sample Program number 23. This program will show you how each of the sixty-four colors
appears on your display, eight at a time. Find the "Color Codes" section near the back of
the book. There are sixty-four blank lines, labeled zero to sixty-three. Write a name for each
of the colors you see, next to the appropriate number. Pat yourself on the back, and try out
Sample Program number 24. You will see an exciting assortment of colors, selected at random
from the sixty-four available colors Excited? Keep reading, and learn how you can use these
colors in your own programs.

Using Nonstandard Colors in a Program
(An Example of PALETTE)
This is the Magic program from the last ct1apt£:r

1 0 WIDTH 40
1 5 CLS4
20 LOCATE 10,12
25 ATTR 3,2,B
30 PRINT "A Screenful of Magic"

Suppose you want to change the palette so that the ATTR 3,2,B conmicmd produces a sunshine
yellow foreground.

The steps arc:

1. Determine which palette slot produces the foreground color (the "3" 111 the ATTR 3,2, B
command).

Ry referring to Table 8.2, you sec that Slot I 1 produces the foreground color.

2. Look up the code for sunshine yellow by rnferring to "Color Codes."

3. Store the code (from Step 2) in the specified palette slot (from Step 1), by adding this
line to your program:

2 PALETTE 11 , XX (XX represents the color code)

4. Run the program.

53

B I Colors

54

Returning to Standard Colors
(The PALETTE CMP and PALETTE RGB Commands)
After altering the palette, you might want to return it to its standard condition. You can do
this with the PALETTE CMP and PALETTE RGB commands. Their syntaxes are:

PALETTE CM P Sets the computer to display the standard colors on a CMP monitor.

PALETTE R GB Sets the computer to display the standard colors on an RGB monitor.

If you have a CMP monitor, type

PALETTE CMP (ENTER]

If you have an RGB monitor, you have already used the PALETTE RGB command Type:

PALETTE RGB (ENTER)

Your palette is now back to normal If you type c Ls 3 CE_NJ"Elii, for example, your screen again
shows blue.

Learned in Chapter 8

COMMAND

r>ALETff

9 / RANDOM CHANCE

Thanks to BASIC's random numbers, the computer can play almost any game of chance

Picking a Random Number
(The RND Function)
Type this program:

10 PRINT RND(10)

Run it. The computer Just picked a random number from 1 to 10. Run it some more times.

It's as if the computer is drawing a number from 1 to 10 out of a hat. The number it picks
is unpredictable.

Type and run this next program Prp,ss -BR-EAK when you're satisfied that the numbers are
random.

10 PRINT RND(10);
20 GOT010

To get random numbers from to 100, change Line 10 and run the program.

10 PRINTRND(100);

Unlike the other BASIC words you usr:d RND 1c; ;1 function This means that RND returns
a value-in this case, a number. Becau:se RNO returns a number, you can usp, RND in the
same way that you would use a number

These commands illustrate how you could use RND:

PRINT RND(10)+15
SOUND RND(255), RND(255)
CLSRND(8)
FOR N=1 TO RND(5) •.. NEXT N

The syntax for RND Is

RN D(n) Returns random number between 1 a11d n (if n is greater than 1) or between
o and 1 (If n equals 0).

The rest of this chapter is just for fun If you are 111 a hurry to learn more BASIC words, you
can skip to the next chapter

55

9 I Random Chance

56

A Random Show
(An Example of RND}
Have the computer compose a song made up of random tones Type:

10 T=RND(255)
20 SOUNDT,1
30 GOTO 10

Run it. Great music, eh? Press : BREAK when you've heard enough.

DO-IT-YOURSELF PROGRAM 9-1

Add some lines to make the computer show a random color (1-8) right before it sounds
each random tone.

Rolling the Dice
(An Example of RND}
In this game. the computer rolls two rllce lo cJo this. it must come 11r with two random nurnhers
Type:

1 0 CL S

20 X=RND(6)

30 Y=RND(6)

40 R = X + Y

50 PRINTX,
60 PRINTY
70 PRINT "YOU ROLLED A" R
80 INPUT "DO YOU WANT ANOTHER ROLL 7 "; A$
90 IF A$= "YES" THEN 10

Run the program

Line 10 clears the screen.

Line 20 picks a random number from 1 to 6 for one die.

Line 30 picks a random number for the other die.

Line 40 adds the two dice to get the total roll.

Lines 50-70 print the results of the roll.

Line 80 lets you input whether you want another roll. If you answer YES at Line 90, the program
goes to Line 10 and runs again. Otherwise, the program ends.

9 I Random Chance

DO-IT-YOURSELF PROGRAM 9-2

Because you know how to roll dice, it will be easy to write a Craps program. These
are the rules of the game (in its simplest form)

The player rolls two dice. If the first roll is a 2 (snake eyes). a 3 (cock-eyes), or
a 12 (boxcars), the player loses, and the game is over

2 If the first roll is either a 7 or 11 (a natural), the player wins. and the game's over.

3 If the first roll is any other number, the point goes to the player. The player must
keep rolling until either "making the point" by getting the same number again
to win, or rolling a 7, and losing.

You already know more than enough to write this program Make the computer
print it in an attractive format on your screen, and keep the player informed about
what is happening. It might take you a while to finish. but give it your best. Good
luck 1

Learned in Chapter 9

FUNCTION

RND

57

10 / READING

In this chapter. you teach the computer to read. You do this using three new commands,
READ. DATA. and RESTORE. You also learn a new function INT.

Reading Data
(The DATA and READ Commands)

Type ancJ run this proqrani

10 DATA APPLES, ORANGES, PEARS
20 FORX=1T03
30 READ F$
40 NEXT X

Nothing appears to happen. To see what the computer 1s doing ado this line and run the
program

35 PRINT "F$ = :" F$

Line 30 tells the computer to:

1. Look for a DATA line.

2 READ the first item in the list APPLES.

3 Give APPLES an F$ label.

4. Go to the next ,tern

59

10 I Reading

60

The second time the computer gets to Line 30, it is told to do the same

1. Look for a DATA line

2 READ the first item This time. it's ORANGES.

3. Give ORANGES the F$ label.

4. Go to the next item.

You can insert DATA lines wherever you want in the program. Run each of these programs.
They all work the same

1 0 DATA APPLES 1 0 DATA APPLES, ORANGES
20 DATA ORANGES 20 DATA PEARS
30 FOR X = 1 TO 3 30 FOR X = 1 TO 3

40 READ F$ 40 READ F$
50 PRINT "F$ = . " F$ 50 PRINT "F$ = . " F$

60 NEXT X 60 NEXT X
70 DATA PEARS

30 FOR X = 1 TO 3 30 FOR X = 1 TO 3
40 READ F$ 40 READ F$
50 PRINT "F$ = :" F$ 50 PRINT "F$ = :" F$

60 NEXT X 60 NEXT X
70 DATA APPLES 7¢ DATA APPLES, ORANGES,
80 DATA ORANGES PEARS
90 DATA PEARS

The syntax for DAT A 1s

DAT A data items Inserts data items in the program.

The syntax tor READ IS

RE AD vanable Reads the next data item in the program and stores it in vanable

Reading the Same Data-Over and Over
(The RESTORE Command)
Look at the original DAT A program

10 DATA APPLES, ORANGES, PEARS
20 FOR X = 1 TO 3
30 READ F$
40 NEXT X

What if you want the computer to read the same list over and over? Type

60 GOTO 10

Run the program. The com put er displays ? o D ERR o R IN 3 0 (Out of Data Error in Line 30).
The first time the computer reads the data items, it crosses them out. Then. when asked to
go back to Line 30 and read the crossed-out data items, the computer displays ?OD ERROR.

Type this line and run the program.

50 RESTORE

10 I Reading

Now, it's as if the computer never crossed out any data items. It reads the same data again
and again.

The syntax for RESTORE is:

RESTORE Moves the computer's data pointer back to the first data item.

A Vocabulary Building Test
{The INT Function)
This example program uses DATA, READ, and RESTORE to have the computer drill you on
words and definitions. Here are the words and definitions we use

10 DATA TACITURN, HABITUALLY UNTALKATIVE
20 DATA LOQUACIOUS, VERY TALKATIVE
30 DATA VOCIFEROUS, LOUD AND VEHEMENT
40 DATA TERSE, CONCISE
50 DATA EFFUSIVE, DEMONSTRATIVE OR GUSHY

To writP. il program In which the computer drills you on ti Iese words ,1nci cid1nitions, you need
to have it select words at random. Type:

60 N=RND(10)
70 FOR X = 1 TON
80 READ A$

90 NEXT X
100 PRINT "THE RANDOM WORD IS:" A$

Ru11 the prrnyam il few times. At this point, the program doesri't work q111tc right The cornpulm
Is Just as likely to slop at il cicfinit1on as at a word

What the computer really needs to do is pick a random word only from items 1, 3, 5, 7, or
9, rather than from all the items. In other words, N (the random number) needs to always
be an odd number.

Although BASIC does not have a function that converts even numbers to odd numbers, it
does have an INT function that you can use to make this conversion.

INT converts a number to its "whole part" and deletes the decimal part. For example, INT(3.9)
equals 3. The syntax for INT is:

INT (n) Returns the "whole part" of n. n can be any number.

61

10 I Reading

62

You can use N to convert even numbers to odd numbers by typing this line

65 IF INT(N/2) = N/2 THEN N = N -1

This is what Line 65 does

• If N equals an even number Line 65 subtracts 1 from N to make N equal to an odd
number.

For example, if N equals 10, Line 65 makes the following calculation.

INT(10/2) = 10/2
INT(5) = 5
5 = 5

Because the results are true (5 does equal 5), Line 65 subtracts 1 from N to make
N equal to 9

• If N equals an odd number, Line 65 leaves N unchanged.

For example 1/ N equals 9. Line 65 makes the following calculation.

INT(9/2) "" 9/?
INT(4.5) = 4.5
4 ~ 4 5

Because the 1·esults are false (4 does not equal 4.5), Limi f-i5 leaves N ur1cl1crngcd

Now. add these lines so thc1t the computer will read each word's definition

110 READB$

120 PRINT "THE DEFINITION IS:" B$

Add these line:s so H1al the computnr will read from the same list over a11d over

130 RESTORE

140 GOTO 60

List the program rhis 1s how it looks now

10 DATA TACITURN, HABITUALLY UNTALKATIVE
20 DATA LOQUACIOUS, VERY TALKATIVE

30 DATA VOCIFEROUS, LOUD AND VEHEMENT
40 DATA TERSE, CONCISE

50 DATA EFFUSIVE, DEMONSTRATIVE OR GUSHY
60 N=RND(10)

65 IF INT(N/2) = N/2 THEN N = N - 1

70 FOR X = 1 TO N
80 READ A$

90 NEXT X

100 PRINT "A RANDOM 1-JORD IS:" A$
110 READ B$

120 PRINT "ITS DEFINITION IS:" B$

130 RESTORE
140 GOTO 60

DO-IT-YOURSELF PROGRAM 10-1

Want to complete this program? Add lines to have the computer:

1. Print the definition only

2. Ask you for the word.

3. Compare the word with the correct random word.

10 I Reading

4. Tell you if your answer is correct. If your answer is incorrect, print the correct word

Learned in Chapter 10

COMMANDS

OAT/\
HcAO
RESTOR[

FUNCTION

INT

63

11 / HELP WITH ARITHMETIC

Solving long math problems fast and accurately is a task your computer does with ease. This
chapter shows how to use some short cuts when typing long, difficult formulas.

Subroutines
(The GOSUB and RETURN Commands)
An easy way to handle complicated math formulas is by using the GOSUB and RETURN
commands to set up a subroutine. You always use GOSUB and RETURN together. Their
syntaxes are:

GOSUB line number Goes to the subroutine beginning at line number.

RE Tu RN Returns from the subroutine to the command immediately following the
corresponding GOSUB command.

Type and run this program:

10 PRINT "EXECUTING THE MAIN PROGRAM"
20 GOSUB 500
30 PRINT "NOW BACK IN THE MAIN PROGRAM"
40 END

500 PRINT "EXECUTING THE SUBROUTINE"
510 RETURN

GOSUB 500 tells the computer to go to the subroutine that starts at Line 500. RETURN tells
the computer to return to the BASIC word that immediately follows GOSUB.

65

11 I Help With Arithmetic

66

Labeling Subroutines
(The REM Command)
This subroutine multiplies any number by 100:

10 INPUT "TYPE A NUMBER"; N
20 GOSUB 2000
30 PRINTN"TIMES100 IS"R
40 GOTO 10

2000 REM FORMULA FOR MULTIPLYING A NUMBER BY 100
2010 R=N*100
2020 RETURN

Notice the REM command in line 2000. REM lets you insert a comment in a program. Its syntax
is:

REM comment Inserts any comment in a program line, without the comment having any
effect on the program.

You can insert nEM lines anywhere you want in yotir rrogram l hey make no differenc:0 in
the way the program works. To sec for yourself, add lhesc lines and run the program

5 REM THIS IS A PECULIAR PROGRAM,
17 REM WILL THIS LINE CHANGE THE PROGRAM 7

45 REM THE NEXT LINE KEEPS THE SUBROUTINE SEPARATED

Using More Than One Subroutine
(The ON GOSUB Command)
The ON GOSlJH command 111akes ii easy for you to include more lhan one s11brout1ne in a
progran1. The syntax for ON GOSUB is:

ON n GO SUB line numbers Goes to the subroutine beginning al lhc nH1 line number.

ro see how ON GOSUcl works, type this program:

10 INPUT "TYPE 1, 2, OR 3"; N
20 ON N GOSUB 100, 200, 300
30 GOTO 10

100 PRINT"YOUTYPED1"
110 RETURN

200 PRINT "YOU TYPED 2"
210 RETURN

300 PRINT "YOU TYPED 3"
310 RETURN

Run it.

Line 20 works the same as these three commands

18 IF N = 1 THEN GOSUB 100
20 IF N = 2 THEN GOSUB 200
22 IF N = 3 THEN GOSUB 300

11 I Help With Arithmetic

ON GOSUB causes the computer to look at the line number following ON (in this case N).

• If N is 1, the computer goes to the subroutine starting at the first line number
following GOSUB.

• If N is 2, the computer goes to the subroutine starting at the second line number.

• If N is 3, the computer goes to the subroutine starting at the third line number.

What if N is 4? Because Line 20 doesn·t have a fourth line number. the computer simply goes
to the r1ext lir1e ir1 the program

Here 1s a proqram that uses O~~ GOSU cl

5 FORP=1T0600:NEXTP
10 CLS: X = RND(100): Y = RND(100)
20 PRINT "(1) ADDITION"
30 PRINT "(2) SUBTRACTION"
40 PRINT "(3) MULTIPLICATION"
50 PRINT "(4) DIVISION"
60 INPUT "WHICH EXERCISE(1-4)";R
70 C LS

80 ON R GOSUB 1000, 2000, 3000, 4000

90 GOTO 5

1000

1010
1020
1030

2000
2010
2020

2030

3000
3010

3020

3030

4000

4010
4020

4030

PRINT "WHAT IS" X "+" Y
INPUT A
IF A= X + Y THEN PRINT "CORRECT" ELSE PRINT "WRONG"
RETURN

PRINT "WHAT IS" X "-" Y
INPUT A

IF A= X-Y THEN PRINT "CORRECT" ELSE PRINT "WRONG"
RETURN

PRINT "WHAT IS" X "*" Y
INPUT A

IF A= X*Y THEN PRINT "CORRECT" ELSE PRINT "WRONG"
RETURN

PRINT "WHAT IS" X "/" Y
INPUT A

IF A= X/Y THEN PRINT "CORRECT" ELSE PRINT "WRONG"
RETURN

Going To More Than One Place
(The ON GOTO Command)
The ON GOTO command is similar to the ON GOSUB command that you 1ust learned about.
Its syntax is:

ON n GOTO !me numbers calls tne subroutine beg,nn,ng at the nth line number.

67

11 I Help With Arithmetic

68

It works the same way as ON GOSU B, except that it performs a GOTO the selected line, instead
of a GOSUB. In the following sample program, ON GOTO determines what the computer
prints when you press 1-3.

10 A$=INKEY$: IF A$="" THEN 10
20 IF A$< "1" OR A$> "3" THEN 10
30 B==VALCA$)
40 ON B GOTO 100,200,300
50 GOTO10
100 PRINT "YOU PRESSED 1":GOTO 10
200 PRINT "YOU PRESSED 2":GOTO 10
300 PRINT "YOU PRESSED 3":GOTO 10

RUN the program and see what happens.

Give the Computer a Little Help
(Parentheses)
As math formulas get more complex. your computer needs help understanding them For
example, what if you want the computer to solve this problem:

Divide the sum of 13 + 3 by 8

You might want the computer to arrive at the answer this way:

13 + 3 / 8 = 16/8 = 2

Instead, the computer arrives at another answer. Type this command line and see:

PRINT 13 + 3 I 8 ::ENTER

The computer solves problems using these rules:

RULES ON ARITHMETIC

The computer solves arithmetic problems in this order

1. First, it solves any exponentiation operations.

2. Second, it solves any multiplication and division operations.

3. Last, it solves addition and subtraction operations.

4. If there's a tie (that is, more than one exponentiation, multiplication/division, or
addition/subtraction operation), it solves the operations from left to right.

The computer solves the problem above using its rules:

• First, it does the division (3/8 = .375)

• Then, it does the addition (13 + .375 = 13.375)

If you want the computer to solve the problem differently, you need to use parentheses. Type
this line:

PRINT (13 + 3) I 8 ENTEFL

11 I Help With Arithmetic

Whenever the computer sees an operation in parentheses, it solves that operation before solving
any others.

COMPUTER MATH EXERCISE

What do you think the computer will print as the answers to each of these problems?

PRINT 10 - (5 - 1) I 2 ____________________ _

PRINT10-5-1/2_

PRINT (1 0 - 5 - 1) I 2 ___________________ ~

PRINT (1 0 - 5) - 1 / 2 __________________ _

PRINT 1 0 - (5 - 1 / 2) __________________ _

Finished? Type each of the command lines to check your answers

What if you want the computer to solve this problem?

Divide 10 minus the difference of 5 minus 1 by 2

You're actually asking the computer to do this:

(10 - (5 - 1)) / 2

When the computer "ees a problem with I11ure ll1a11 one set of parentheses. it solves l11e inside
parentt1eses :rnd thnn moves to the outside parentheses. In other words. it docs this:

5 - 1 - 4

10 - 4 = 6

6 / 2 = 3

RULES ON PARENTHESES

• The computer solves operations enclosed in parentheses first, hotore solving
any others.

• The cornpllter solves the innermost parcntr1eses first. It then works its way out.

COMPUTER MATH EXERCISE

Insert parentheses In the problem below so that the computer prints 28 as the answer.

PRINT 30 - 9 - 8 · 7. 6

Answer:

PRINT30- (9-8)- (7-6)

69

11 I Help With Arithmetic

70

Displaying Large Numbers
(E Notation}
Type and run this program to see how the computer displays large numbers

1 0 X = 1
20 PRINT X;
30 X=X*10
40 GOTO 20

The computer displays large and small numbers using exponential (E) notation. The computer
displays one billion (1,000,000,000), for example, as 1 E + 09, which means the number one
followed by nine zeros.

If the computer displays a number as 5E-06, you must shift the decimal point, which comes
after the 5, six places to the left, inserting zeroes as necessary Technically, this means 5 * 1 o-s.
or 5 millionths (.000005).

Notice that when you run the above program, the computer displays an ?OV ERROR (Overflow
Frror) at the end of the program. The computer can't handle numhers larger than 1 E + 38
or smaller than -1 E + 38.

[notation is simple once you ~Jet used to it You'll tind it an easy way lo keep track ot very
lar\.)e or very '.;m,ill numbers without losing the uecirnal roInt

COMMANDS

GOSUB
GOTO

ON GOSUB
ON GOTO
RETURN

REM

Learned in Chapter 11

SYMBOLS CONCEPTS

Order of operations
E Notation

12 / HELP WITH WORDS

BASIC has several functions for working with strings. Strings are special constants and variables
that store characters. With string functions, you can program the computer to understand yes
and no, or to tell you things in whole sentences!

Counting Characters
(The LEN Function)
Type and run this program

10 PRINT "TYPE A SENTENCE"
20 INPUTS$
30 PRINT "YOUR SENTENCE HAS" LEN(S$) "CHARACTERS"
40 INPUT "WANT TO TRY ANOTHER"; A$
50 IF A$= "YES" THEN 10

lrnprnsscd? This progranI uses a fur1ction called LEN. The syntax of LEN 1s

LEN (string) Returns the len9th of string

In this program, LEN(S$) computes the length of string S$ (your sentence). The computer
counts each character in the sentence, including spaces and punctuation marks.

Combining Words
(The Concatenation Operator (+))
Erase the program, and run this one, which composes a poem (of sorts)

10 A$= 11 AROSE"
20 B$ = II II

30 C$= 11 ISAROSE"
40 D$=B$+C$

50 E$ = "AND SO FORTH AND SO ON"
60 F$ =A$+ D$ + D$ + B$ + E$

70 PRINT F$

71

12 I Help With Words

72

You might encounter two problems when combining strings. Add the following line, and run
the program. It shows both problems·

80 G$ = F$ + F$ + F$ + F$ + F$ + F$ + F$

When the computer gets to Line 80, it prints the first problem with this line: ?OS ERROR IN
80 (Out of String Space)

On startup, the computer reserves only 200 characters of space for working with strings. Line
80 asks it to work with 343 characters. To reserve room for this many characters and more
(as many as 500), you can use the CLEAR command. Its syntax is.

CLE AR n Clears n characters of string space.

Add this line to the start of the program, and run 1t.

5 CLEAR 500

Now when the computer gets to Line 80, it has enough string space, but prints the second
problem with this line ?LS ERROR IN 80 (String Too Long).

A string can contain no more than 249 characters. When you want to store more than 249
characters, you need to divide the characters into smaller gro11rs and store each woup ir1
its own string

Twisting Words
(The LEFT$ and RIGHT$ Functions)
Now that you car1 combine strings, try to take a strir1w apart using two new f1mc:tions LEFT$
,md RIGHT$. Their syntaxes arc

LEFT $(slri11q,n) fkturns the first n c:haracters of stnnq.

RIGHT $(strmg,n) Heturns the last n characters ot stnng

l ype arid run this program.

10 INPUT "TYPE A WORD"; W$
20 PRINT "THE FIRST LETTER IS:" LEFT$ (W$,1)
30 PRINT "THE LAST 2 LETTERS ARE:" RIGHT$ (W$,2)

40 GOTO 10

Here's how the program works:

In Line 10 you input string W$ Assume the string is MACHINE

COMPUTER MEMORY

W$ = MACHINE

In Lines 20 and 30, the computer computes the first left letter and the last two right letters
in the string:

M A C H I N E
LEFT$ (W$,1) RIGHT$ (W$,2)

Run the program a few more times to see how it works.

12 I Help With Words

Now, add this line to the program:

5 CLEAR 500

The computer will now set aside plenty of space for working with strings. Run the program
again. This time input a sentence rather than a word.

PROGRAMMING EXERCISE

How would you change Lines 20 and 30 so the computer will give you the first five
letters and the last six letters of your string?

20

30

Answers

20 PRINT "THE FIRST FIVE LETTERS ARE:" LEFT$ (W$,5)
30 PRINT "THE LAST SIX LETTERS ARE:" RIGHT$ (W$,6)

Isolating Words
{The MID$ Function)
/\nother flmctio,1 lliat lets you rsolutc ce:rtilm words rs MID$ Its syrIt3x r'.;

MID$(stnng,n 1,n:J) Returns a sulx;trinq of stnng hn<Jrnnin~J wrtlr strim/:; n /Hi
chmacter ancJ conti11uinq for 112 chmucters.

F r;isn your proqram arid type tlw; onn

10 CLEAR 5rb0
20 INPUT "TYPE A SENTENCE"; S$
30 PRINT "TYPE A NUMBER FROM 1 TO" LEN(S$)
40 INPUT X
5rb PRINT "THE MIDSTRING WILL BEGIN WITH CHARACTER" X
6rb PRINT "TYPE A NUMBER FROM 1 TO" LEN(S$) - X + 1
70 INPUT Y
80 PRINT "THE MIDSTRING WILL BE" Y "CHARACTERS LONG"
90 PRINT "THIS MIDSTRING IS:" MID$(S$, X, Y)

100 GOTO 2rb

Run this program a few times to see if you can deduce how MID$ works.

Here's how the program works.

• In Line 20, assume you input HERE IS A STRING

YOUR COMPUTER'S MEMORY

S$ _,, HERE IS A STRING

• In Line 30, the computer computes the length of S$, which is 16 characters. It then
asks you to choose a number from 1 to 16. Assume you choose 6

73

12 I Help With Words

74

• In Line 60, the computer asks you to choose another number from 1 to 11 (16-6 + 1),
Assume you choose 4

YOUR COMPUTER'S MEMORY

X 6
y = 4

• In Line 90, the computer gives you a "mid-string" of S$ that starts at the 6th character
and is tour characters long:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
HERE IS AST RING

- 4 -
MID$(S$,6,4)

As another example of MID$. rur1 this program

10 INPUT "TYPE A SENTENCE"; S$
20 INPUT "TYPE A WORD IN THE SENTENCE"; W$
30 L=LEN(W$)
40 FORX=1TOLEN(S$)
50 IF MID$(S$,X,Ll::: W$ THEN 90
60 NEXT X
70 PRINT "YOUR WORD ISN'T IN THE SENTENCE"
80 END
90 PRINT W$ "--BEGINS AT CHARACTER NO." X

f lere:·s how tile proqram wmk::;

• In Line 20. you Inp11t a word as W$. /\ss11me you input lhe worrl IS

• In Linc 30, the computer counts W$'s len\:]ttl: two characters

YOUH COMPUT[R'S MEMOHY

S$ ~ HERF IS A STRING
W$ = IS

L = 2

• In Lines 40-90 (the FOR/NEXT loop), the computer counts ead1 character in S$,
starting with Character 1 and ending with Character LEN(S$). which is 16.

Each time the computer counts a new character, it looks at a new mid-string, Each
mid-string starts at character X and is L (2) characters long.

For example, when X equals 1, the computer looks at this mid-string

H E R E I S A S T R I N G
+-2-+

MID$(S$,1,2)

12 I Help With Words

The fourth time through the loop, when X equals 4, the computer looks at this mid-string:

4
H E R E I S A -2-

MID$(S$,4,2)

S T R I N G

When X equals 6, the computer finds IS, the mid-string for which it is searching.

DO-IT-YOURSELF PROGRAM 12-1

Start with a one-line program:

10 A$= "CHANGE A SENTENCE."

Add a line that inserts this to the start of A$:

IT'S EASY TO

Add another line that prints the new sentence:

IT'S EASY TO CHANGE A SENTENCE

This is our program

10 A$= "CHANGE A SENTENCE."
20 8$ = "IT'S EASY TO"
30 C$=B$+""+A$
40 PRINT C$

75

12 I Help With Words

76

DO-IT-YOURSELF PROGRAM 12-2

Add to the above program to make 11:

1. Find the start of this mid-string:

A SENTENCE

2. Delete the above mid-string to form this new string:

IT'S EASY TO CHANGE

3. Add these words to the end of the new string·

ANYTHING YOU WANT

4 Print the newly formed string

IT'S EASY TO CHANGE ANYTHING YOU WANT

Hint: To form the string IT'S EASY TO CHANGE, you need to get the left portion
of the string IT'S EASY TO CHANGE A SENTENCE.

Answer·

10 A$= "CHANGE A SENTENCE."

20 B$ = "IT'S EASY TO"

30 C$=B$+""+A$

40 PRINT C$

50 Y = LEN ("A SENTENCE")

60 FOR X = 1 TO LEN(C$)

70 IF MID$ (C$,X,Y) = "A SENTENCE" THEN 90
80 NEXT X

85 END

90 D$=LEFT$(C$,X-1)

100 E$ = D$ + "ANYTHING YOU WANT"
110 PRINT E$

DO IT YOLJRSFI F CHALLENGEF1 PROGRAM

Write a program that

• Asks you to input a sentence.

• Asks you to input (1) a phrase within the sentence to delete and (2) a phrase
to replace it.

• Prints the changed sentence.

This might take a while, but you have everything you need to write it Our answer's
in the back.

FUNCTIONS

LEN
LEFT$

RIGHT$
MID$

Learned in Chapter 12
COMMAND

CLEAR

SYMBOL

+

13 / SAVING PROGRAMS

As you know by now, each time you turn off the computer, your program disappears. To make
a permanent copy of a program, you need a cassette recorder or a disk drive.

If you plan to use a cassette recorder. read this chapter. It shows how to use CLOAD, CSA VE,
and SKIPF to save your BASIC programs 011to cassette tape.

Saving BASIC Programs on Tape
(The CSA VE Command)
To save your BASIC programs on tape, use the CSAVE command. Its syntax is:

Cs AVE "filename" Saves a BASIC program named filename on cassette tape.

The steps are:

1. Connect the cassette recorder to your color computer. The introduction manual that comes
with your color computer shows how to do this.

2. Type a BASIC program into the computer's memory.

3. Insert a blank cassette tape into the recorder.

4. Press the recorder's PLAY and RECORD buttons at the same time until they lock.

5. Choose a name for your BASIC program, which we'll refer to as a filename. You can
use any filename with 8 or fewer letters. Examples of filenames are:

NAM[GAMES LETTERS

6. LJse CSAVE to save the program on tape.

For example, to save a program named LETTERS, type

CSAVE "LETTERS" (oo:EBJ

As soon as you press CfRttru, the cassette recorder's motor starts. When the motor
stops, BASIC displays the OK prompt or1 the soeen. The program is still in the computer's
memory. but it is also saved on cassette tape.

It's a good idea to make more than one copy of a program, preferably on separate cassettes,
in case one is lost or inadvertently erased.

77

13 I Saving Programs

78

Loading BASIC Programs from Tape
(The CLOAD Command)
To load your BASIC programs from tape, u:;e the CLOAO command. Its syntax is:

c LOAD "filename" Loads ;i BASIC program named filename from cassette tape.

The steps are

Be sure the tape is fully rewound and the connections are all in place.

2. Press the PLAY button on the recorder until it locks.

3. Erase any existing programs by typing:

NEW CE:N.IERJ

4 Use the CLOAD command to load the program from tape.

For example, to load the program named LETTERS from tape, type

C LO A D " LETTERS " (ENT_E_BJ

As soon as you press [E-NTER), the tape recorder's motor starts. BASIC then begins
searching fur your progr;im_ While it is searching, BASIC displays the letter Son the upper
left of your screeI1.

When BASIC f1ncis yrnn program, it displays the letter F and the filename of the program
at the top of your screen arid begins loading your progrnm. When it has finished loading
your program, BASIC displays the OK prompt

If you are certain your tape has only one program saved on it, you can type CLOAD without
a filename The computer loads the first program It encounters.

If you try to load a program from a blank tape, the color computer searches until the tape
ends without giving any indication that the tape is blank. Press RESET to stop the loading
process.

Saving Many Programs on Tape
(The SKIPF Command)
When you save more than one program on the same tape, you need to use the SKIPF
command. SKIPF lets you position the tape at the end of your last program so that you can
be sure that you do not save your next program on top of your last program. Its syntax is:

s KIP F filename Skips through the tape until it finds the end of filename.

The steps are:

1. Rewind the tape to the beginning.

2. Press the PLAY button until it locks.

3. Enter the SKIPF command to find the end of the last program you have saved on the tape.

For example, if the last program you saved on the tape is "LETTERS", type:

SKIPF "LETTERS" (E_NTEF!J

13 I Saving Programs

The computer notifies you when it finds the program called LETTERS. When it reaches
the end of LETTERS, the recorder's motor stops and your screen displays the OK prompt.

4. Press the RECORD and PLAY buttons, and use CSAVE to save your next program.

If you can't remember the name of your last program, use an improbable filename such as:

SKI PF "X" (ENTER)

Hints and Tips
Here are some tips for making good recordings:

• When you're not using the computer to SAVE or LOAD programs, don't leave the
recorder's RECORD or PLAY buttons down. Press STOP.

• You can avoid many problems with tapes by using new, high-quality computer tapes

• If you want to reuse a prerecorded tape, first erase the contents with a bulk tape
eraser to be sure you erase everything. Even though the recording process erases
the old recording. Just enougt1 information can be left to confuse the new recording.

• If you want to sr1ve a taped program permanently, break off the Erase Protect tab
on the cassette. (See your tape recorder manual) Without the tab, yrni can't press
the RECORD button on yo1ir recorder This keeps you from 3cc1dent;illy erasing that
tape

Learned in Chapter 13

COMMANDS

CSAVE
CLOAD
SKIPF

79

14 / EDITING PROGRAMS

Up to now, you changed programs by retyping them. This chapter shows how to change
programs the easy way, using the EDIT, DELETE. and RENUM commands.

Editing Lines
(The EDIT Command)

To get into the edit mode, use the EDIT command. The syntax of El)IT is

ED IT line number Enters the edit rnodo so you can edit line number.

In the edit mode you can use any of the special edit keys listed in Table 14.1.

Table 14.1 Edit Keys

(n is a number. If you omit n, BASIC uses 1.)

Key

IJJ
n~characters
J....
nQ

J:L
QC
n s character
(Kl

n®character
nl SPACEBAR I
nEJ
(SHIFTIW

Action

Lists the line and moves to the start.
Changes the next n characters to new characters.
Inserts characters.
Deletes n characters.
"Hacks" the rest of the line and puts you in the insert mode.
Lets you extend the line.
Searches for the nth occurrence of character.
Kills rest of line.
Kills (deletes) up to the nth occurrence ot character.
Moves n spaces forward.
Moves n spaces backward.
Return to line mode.

81

14 I Editing Programs

82

Make a mistake typing a program. Type

50 DABA EFFFUSIVE, GIMPY MUSHY

Enter the edit mode. Type:

ED IT 5 0 CENIE_RJ

You see:

50 DABA EFFFUSIVE, GIMPY MUSHY
50

Start by pressing CLJ, the List key. The l~I key displays the entire line and puts you back at
the start.

Moving the Cursor
(The Space Bar, c-=-J, and CSJ Keys)
Press Space Bar a few times. This key moves you to the right. To move to the lett. press
1• J. Note U1at while 1n the edit mode, (• -1 mewly bar,kspaces, it doesn't delete char;ictors

Move to tile start of Linc /JO and type (5_, space bar. Thi:; moves you 5 spaces tu ti 1e rig hi
all at once. Do the same with 1~1. Type a number, such as en, and 1.:.::_1 anrl move that rnar1y
spaces to the let!.

Move to the start of Line 50. To move to the first E, µress C:,r1 (for "searr,h "). f hen type E
(the character fur wh1ct1 you want to search). There are two ways to move to the second E

• I ype C$:1 E to search for the first E r1fter the current cursor pos1t1on

• Move !Jack to U1e start, and type 2 ili._1 E

Changing Characters
(The (QJ Key)

Mako your first change to Line 50. Change DABA to DATA

1. Move to the "wrong" character, the B in DABA.

2. Press CCJ for change.

3. Type the new character, in this case, T.

4. To be sure the change is made, press W and you see:

50 DATA EFFFUSIVE, GIMPY MUSHY

Now make the next change: Change GIMPY to GUSHY. This time you'll change 3 characters
at a time:

1. Move to the first wrong character, the I in GIMPY.

2. Type 3 cg:; for change three characters.

3. Type the three new characters, US H. Line 50 is now:

50 DATA EFFFUSIVE, GUSHY MUSHY

14 I Editing Programs

If this were all you needed to do to Line 50, you could press I ENTER l and get out of the edit
mode. As you can see, though, you have more wqrk.

Deleting Characters
(The CID Key)

You need to delete a character, one of the F's in EFFFUSIVE:

1. Move to the excess character, the third F in EFFFUSIVE.

2. Press CQJ for delete.

3. It's done. To confirm this, press CD again:

50 DATA EFFUSIVE, GUSHY MUSHY

You can delete more than one character at a time. For example, if you type 4 r□l, you delete
tour characters at once

Inserting Characters
(The !Tl Key)

You now nccci to insert some characters GUSI IY ncecis to be DEMONSTnJ\ TIV[OR GUSHY

1. Move to where you waIIl to insert characters, tl,e space IJefore tl1e G 1n GUSHY

2. Press i.U tor msert rnocle.

3 Type your insert, DEMONSTRATIVE OR

At this pornt you're slill i11 the ir1scrt mocie For example, if you prc'.;s Space Bar. you inserl
a bla11k space; 11 you press U,. 1. you insert an L. Therefore. you need to:

1. Press CSHJ_FUI! to get out of tl,e insert modt,.

2. Now, you carI press !}.,_i to list tl,e line

50 DATA EFFUSIVE, DEMONSTRATIVE OR GUSHY MUSHY

Hacking Characters
(The GD Key)

With hack you alter a line by hacking the end of it and inserting new characters. Try hacking
at Line 50:

1. Move to the first character you want hacked off, the M 1n MUSHY.

2. Press ('Ff; for hack. This deletes the rest of the line and puts you in the insert mode.

3. Type your insert, in this case, CRUSTY.

4. Press Cs}[l}'-TJCD to get out of the rnsert mode.

5. List the line now (by pressing CLJ), and you see:

50 DATA EFFUSIVE, DEMONSTRATIVE OR GUSHY CRUSTY

83

14 I Editing Programs

84

Killing Characters
The CKl Key

Kill is almost the opposite of hack. It "kills" everything up to the nth occurrence of a character
Suppose that you want to kill the first half of Line 50, everything up to the comma.

1. Move to the start of Line 50 and press these keys: CKlw
2. List Line 50 now. and you see

50 ,DEMONSTRATIVE OR GUSHY CRUSTY

Extending Characters
(The 00 Key)

Perhaps you want to extend Line 50:

1. Press 00 tor extend. The cursor moves to the end of the line and you enter the insert
mode.

2. Type your insert AND Mus HY

3. Press Cfil!J FT lCD to get out of the insert mode.

50 ,DEMONSTRATIVE OR GUSHY CRUSTY AND MUSHY

Deleting Lines
(The DEL Command)
So far, you deleted lines the simple way, like this:

50 [ENTERJ

This works tine for one or two lines. but what if you want to delete 50 or 60 lines?

To delete more than one line, you can use the DEL command. The syntax for DEL is

DEL line numbers Deletes the lines specified by the line numbers.

For example, to delete Lines 30-50. type

DEL 30-50 CENTER

14 I Editing Programs

Renumbering Lines
(The RENUM Command)
The REN UM command lets you change a program's line numbers. To see how REN UM works,
type this small program:

10 PRINT "THIS IS THE FIRST LINE"
20 PRINT "THIS IS THE SECOND LINE"
30 PRINT "HERE'S ANOTHER LINE"
40 GOTO 10

Now, renumber it. Type:

REN UM 1 0 0 ,, ENTER l

List the program, and you see the new line numbers beginning with 100. Line 100 is what
we call the newline.

100 PRINT "THIS IS THE FIRST LINE"
110 PRINT "THIS IS THE SECOND LINE"
120 PRINT "HERE'S ANOTHER LINE"
130 GOTO100

Notice that even the GOTO line number reference is renumbered

Renumber the program again with a newline of 200. Type

REN UM 200,120 IEN~R1

Here. the new/me is 200, but the renumbering starts with Line 120. Line 120 is what we call
the start/me.

100 PRINT "THIS IS THE FIRST LINE"
110 PRINT "THIS IS THE SECOND LINE"
200 PRINT "HERE'S ANOTHER LINE"
210 GOTO100

Renumber the program one more time, giving it an increment of 50 between each line:

R E N UM 3 0 0 , , 5 0 U;_NTE}f)

Here the newline is 300. Since you omitted the startline. BASIC renumbers the entire program.
The increment between the lines is 50:

300 PRINT "THIS IS THE FIRST LINE"
350 PRINT "THIS IS THE SECOND LINE"
400 PRINT "HERE'S ANOTHER LINE"
45 0 GOTO 300

Here is the syntax of the RENUM command:

REN u M new/me. startline, increment Renumbers a program

newline The first new renumbered line. If you omit newline, BASIC uses 10

start/me Where the renumbering starts. If you omit startline, BASIC renumbers
the entire program.

increment The increment between each renumbered line. 11 you omit increment,
BASIC uses 10.

Note: RENUM does not rearrange the order of lines.

85

14 I Editing Programs

86

Try some other variations of this command. Type:

REN UM , , 20

This renumbers your entire program. The newline is 10, and the increment Is 20

10 PRINT "THIS IS THE FIRST LINE"
30 PRINT "THIS IS THE SECOND LINE"
50 PRINT "HERE'S ANOTHER LINE"
70 GOTO 10

Type REN u M 4 0, 3 0, ENTER Here, the newline is 40, the startline is 30 and the increment
is 10:

10 PRINT "THIS IS THE FIRST LINE"
40 PRINT "THIS IS THE SECOND LINE"
50 PRINT "HERE'S ANOTHER LINE"
60 GOTO 10

Type REN UM 5, 4 0 Tt,[TER and you get a ?FC Error This is because the result woulc:I move
Line 40 ahead of Line 10.

Learned in Chapter 14

COMMANDS

Fl)11
l)f--L

HFNUM

15 / A POP QUIZ

We have just about reached the end of the first part of this book, so it's time for a "pop quiz."
In this chapter, you'll learn how to use the INKEY$ and VAL functions to set up tests for yourself.

Watching the Keyboard
(The INKEV$ Function)
By using a word named INKEY$, you can get the computer to constantly watch, time, or test
what you're typing. Its syntax is:

INK E Y $ Returns the key currently being pressed or, if no key is being pressed,
returns nothing (" ").

Type and run this program:

10 A$= IN KEY$
2r/J IF A$ <>"" GOTO 50
30 PRINT "YOU PRESSED NOTHING"
4r/J GOTO 10
50 PRINT "THE KEY YOU PRESSED IS---" A$

INKEY$ checks to see if you·rc pressing a key. ll docs tt11s in a split second Al least the first
;io times it checks, you've pressed nothing (" ").

Line 10 labels the key you press as A$ Then the computer makes a decision:

• If A$ eqtJals nothinQ (" "), it prints YOU PRFSSl-:D NOTHING and qoes hack to Line 10
to check the k,)yboard again.

• If A$ equals somett1in(.l (anything but " "'), the computer qoes to Line 50 ancJ prints the
k,ey. (The <> notation mear1s "not eq1ml to.")

Add this line and run the program:

60 GOTO 1 0

No matter how fast you are, the computer is faster' Erase Line 30 to see what keys you're
pressing.

87

15 I A Pop Quiz

88

Beat the Computer
(An Example of INKEY$)
Type this program:

1 0 X=RND(4)

20 Y=RND(4)

30 PRINT "WHAT IS"X"+"Y
40 T = 0
50 A$= INKEY$
60 T = T + 1
70 SOUND 128,1
80 IF T = 15 THEN 200
90 IF A$="" THEN 50
100 GOTO 1 0

200 CLS 7
210 SOUND180,30
220 PR I NT "TOO LA TE"

Herc's how the program works:

• Lines 10, 20, r1nd 30 tell the computer to prir11 two random numbers and ask you fur
their sum.

• Line 40 sets I to O T is a timer.

• Line 50 gives you your first chance to answer the question

• Linc, 60 adcls one to T, tt1e timer. T now cquc1ls 1. The next time the computer qets to
line 60 it again adds orie to the timer to mc1ke T equal 2. Each time the computer runs
Line 60 it adds orie to T.

• Line 70 beeps

• Line 80 tells the computer you have 15 chances to answer Once f equals 15, time's
up. The computer insults you with Lines 200, 210, and 220.

• Line 90 says if you haven't answered yet, the computer needs to go back and give you
another chance.

• The computer gets to Line 100 only if you do answer. Line 100 sends it back for another
problem.

How can you get the computer to give you three times as much time to answer each question?

Answer:

By changing this line:

80 IF T = 45 THEN 200

15 I A Pop Quiz

Checking Your Answers
(The VAL Function)
How can you get the comptiter to check lo see if your answer 1s correct? WoukJ this work?

100 IFA$=X+YTHEN130
110 PRINT "WRONG", X "+" Y 11 =11 X + Y
120 GOT010
130 PRINT "CORRECT"
140 GOTO 10

If you run this program (and answer on time), you get this error messawe:

?TM ERROR IN 100

That's because you can't make a string (A$) equal to a number (X + Y). Somehow, you must
change A$ to a number.

BASIC has a function for this called VAL. Its syntax is

VA L(string) Returns the numeric value of string.

Change Line 100 by typing

100 IF VAL(A$) = X + Y THEN 130

VAL(A$) converts A$ into its numeric value. If A$ equals the string "5", VAL(A$) equals the
number 5. If VAL(A$) equals the string ''C, '' VAL(A$) equals the number 0. (' 'C'' has no numeric
value.)

To make the program more challenging, change these lines:

10 X = RND(49) + 4

20 Y=RND(49)+4
90 B$=B$+A$
100 IF VAL(B$) = X + Y THEN 130

89

15 I A Pop Quiz

90

Then add these lines

45 B$ = ""
95 IFLEN(B$)<>2THEN50

A Computer Typing Test
(An Example of INKEY$)
Here's a program that times how fast you type:

1 0 C LS

20 INPUT "PRESS <ENTER> WHEN READY TO TYPE THIS

PHRASE"; E$

30 PRINT "NOW IS THE TIME FOR ALL GOOD MEN"

40 T = 1
50 A$= INKEY$

60 IFA$=""THEN100

70 PRINT A$;
80 B$=B$+A$

90 IF LEN(B$) = 32 THEN 120

100 T=T+1

110 GOTO50

120 S = T/74
130 M=S/60

140 R=8/M

150 PRINT
160 PRINT "YOU TYPED AT--"R"--WDS/MIN"

Line 40 sets T, the timer, to 1.

Line 50 gives you your first chance to type a key (A$). If you're not fast enough. Line 60 sends
the program to Line 100 and adds one to the timer.

Line 70 prints the key you typed.

15 I A Pop Quiz

Line 80 forms a string named B$. Each time you type a key (A$), the program adds this to
B$. For example, if the first key you type is "N," then:

A$= "N"
and
B$ = B$ + A$
B$ = "" + "N"
B$ = "N"

If the next key you type is "0," then:

A$= "O"
and
B$ = B$ + A$
B$ = "N" + "O"
B$ = "NO"

If the third key you type is "W," then:

A$= "W'"
and
B$ - "NO" + "W"
B$ - "NOW"'

When the length ot B$ is 32 (the length of NOW IS THE l lME FOR ALL GOO[) M!::N). the
program 8ssumes you finished typing th0 phrase and goes to Line 120 to compute your words
per minute.

Lines 120. 130, and 140 compute your typing speed They divide T by 7 4 (to get the seconds)
and S by 60 (lo get the minutes) They then divide the eight words by M to gel the words
per minute.

Learned in Chapter 15

BASIC WORDS

INKEY$
VAL

91

PART 2/ HAVING FUN

Have you reached your fill of BASIC basics? In this part of the book, you take a break and
learn to

• Compose a song.

• Draw a picture,

• Play a game with the joysticks.

93

16 / MUSIC

In this chapter. you use the PLAY command to play some of your favorite tunes.

The syntax for PLAY is

PLAY string Plays string. Stnng can consist of any of the following options:

note (a letter from "A" to "G" or a number from 1 to 12).

octave (0 followed by a number tram 1 to 5). If you omit octave, tho computer
uses Octave 2.

note-length (L followed by a numeral from 1 to 255). If you omit note-length,
the computer uses the current length.

tempo (T followed by a number from 1 to 255). If you omit tempo, the computer
uses T2.

volume (V followed by a number from 1 to 31). If you omit volume, the computer
uses V15.

pause-length (P followed by a number from 1 to 255).

suLJstnngs. Precede substrings with an X and follow them with a semicolon.
Example: XA$;

95

16 I Music

96

Notes
(The NOTE Option)
Yo11 can specify ;1 musical note in two ways. The! first is to enter the note·s leller: A. B. C,
D, E, F, or G. To indicate a sharp, use the plus (+)or pound(#) sign. To indicate a flat use
the minus (-) sign.

For example, A represents A natural, A# is A sharp, and A- is A flat. Type the following
commands to hear what we mean:

p LA y II A II (Et-i.lE.R:
PLAY 11 A; A#" 'l:NTER'

p LA y II A - ; A ; A# ; A ; A - II !:NTEl'iJ

The second way to specify a musical note is to use a number in the range 1-12, preceded
by the letter N. (You can omit the N, if you wish.)

2 4 7 9 11

□J.I.IJJ.IJ
3 5 6 8 10 12

16 I Music

For example. to hear the full 12-tone scale, run the following Scale program

5 CL S
10 FORN=1to12
15 PRINT "NOTE#"; N
20 PLAY STR$(N)
30 NEXT N

Note: STR$ converts numbers to strings (It you are really curious peek ahead to Chapter 37.)

Add a delay in the program so you can compare the numbers to the notes as the scale goes
up from 1 to 12 (C to B).

25 FOR I= 1 TO 500: NEXT I

PLAY does not recognize the notation B# or C - . Substitute C for B# and B for C - .

DO IT YOURSELF PROGRAM 16-1

Modify the Scale program so It goes down instead of up.

Whole Notes, Half Notes, Quarter Notes ...
{The NOTE LENGTH Option)
Because the Scale program does not specify note length the computer automatically uses
quarter notes. the initial current value.

You can specify a different note length with L followed by a number in the range 1 to 255.
The number 1. for instance, denotes a whole note, 2 a half note. 4 a quarter note, 8 an eighth
note. 16 a six.teenth note, and so on.

Lnumber Note Length Note

L1 Whole note 0
L2 Half note d
L3 Dotted quarter note J.
L4 Quarter note J
LB Eighth note ,I'
L 16 1 /16 note ti
L32 1 /32 note) L64 1 /64 note

l_ 2 5 5 1 /255 note

Vary the note ler1gths to produce a drum roll. Type·

PLAY " L 2 ; A; L 4; A; A; L 2 ; A; A" (E-NTER i

Notice that you needn't repeat the L option for each note Pl_AY uses the current note value
until you enter another L command to tell 11 otherwise.

Just for tu11. try playing three 1/255 notes

P LAY " L 2 5 5 ; A; A+ ; A - " I ENTERJ

Thats staccato 1

97

16 I Music

98

Dotted Notes
(NOTE LENGTH'S "." Notation)
A dotted note tells you to increase the length of the note by one half its normal value. For
example, a dotted quarter note is equal to a 3/8 note.

You can play a dotted note by adding a period(,) or a series of periods(...) to the note length
(L). Each period increases the note length by 1 /2 its normal value. For example:

PLAY "L4.; A" .ENTER

This plays a 3/8 note (1 /4 + 1 /8 3/8).

Try this

PLAY "L 4 • ; A; L 8 ; C ; L 4 . ; E ; L 8; C ; E ; C ; E ; C ; L 4; A II I ENTEJl1

Octaves
(The OCTAVE Option)
To change or:tcJves, use the letter O followed by a nun1ber in the range 1 to 5 If you don't
specify the octave, th8 r:omputer automatically uses Octave 2, which 1m:l1Jdcs m1clclle C

For example, try to play a simple C scale:

P LAY II C DE F GAB A G F E D C BA " '. ENTER I

What happened? G is the highest note in Octave 2, so when the computer reaches A, it starts
over at the beginning of the octave. To get into Octave 3, try this:

PLAY II CC DEF G; 0 3 ; AB AO 2 ; FED CB A" (ENTER I

16 I Music

Volume
(The VOLUME Option)
To adJust the volume, use V followed by a number in the range Oto 31. If you don't specify
V, the computer uses V15.

For example, run this program:

5 C LS
10 PLAY "VS;A; V10;A; V15;A; V20;A; V25;A; V30;A"
20 GOTO 10

Press (BREAK) when you've I,eard enouul1

Rests
(The PAUSE Option)
To put a pause between notes, use P followed by a number in the range 1 to 255. Pause
lengths correspond to note lengths with one important difference. You can't use dots (periods)
with P. To compensate, Just type a series of pauses. For example, to get a 3/8 pause, type P4P8.

Change Line 10 in the last program to read

10 PLAY "VS;A; P2; V10;A; P2; V15;A; P2; V20;A; P2;
V25;A; P2; V30;A; P2"

Tempo
(The TEMPO Option)
You can increase or decrease the tempo w1ltl T and a n1Imber in the range 1 to 255. If you
don't spec1ty a tempo, your computer aulurnatically 1Jsc:~ T?.

Our program now looks this:

5 CLS
10 PLAY "VS;A;PZ; V10;A;P2; V15;A;P2; V20;A;P2;

V25;A;P2; V30;A;P2"
20 GOTO10

Slow down the tempo by changing Line 10 to:

10 PLAY "T1; V5;A;P2; V10;A;P2; V15;A;P2; V20;A;P2;
V25;A;P2; V30;A;P2"

Now. speed it up by changinu T1 to T15. Thc1t's more like It I

99

16 I Music

100

Substrings
(The SUBSTRING (X) OPTION)
PLAY has a substring option that lets you execute a substring and then return to the original
string and complete it

The execute function takes the following form:

XA$;

Variable A$ contains a string of normal play options. X tells the computer to PLAY the string
of options stored in A$.

Rearrange the demonstration program so it executes a substring:

5 CLS
10 A$= "A;A#;A-"
20 8$ = "O5;XA$;"
30 C$ = "O1;XA$;XB$;"
40 PLAY C$

Run the program and follow its execution.

Note: Whenever you use the substring function, a semicolon (;) must follow the
dollar sign ($). In this example, you can delete all the other semicolons

One Further Note ...
(+,-,<,>)
No, we're not going to spring a new note, like H or J, on you. We simply have one final way
you can use some of PL_AY's options.

With O (octave), V (volume). T (tempo), and L (note length), you can use one of the following
suffixes instead of adding a numeral:

Suffix

+

>
<

Purpose

Adds 1 to the current value.
Subtracts 1 from the current value.
Multiplies the current value by 2.
Divides the cur-rent value by 2.

Use the sample program to learn about these features.

5 CLS
10 PLAY"T2"
20 PLAY "A;A#;A-"
30 GOTO 20

Notice that Line 10 sets the tempo. Run the program once to get an ear for it. Nothing changed;
it's the same as always. Now. insert T in Line 20.

20 PLAY "T+;A;A#;A-"

Run the program. The plus sign automatically increases T by 1 each time Line 20 plays.

16 I Music

Now reduce the tempo, using a minus sign (-)

5 CLS
10 PLAY "T255"
20 PLAY "T-;A;A#;A-"
30 GOTO 20

Isn't multiplication faster than addition? In Line 10, reset the tempo to 2. Change T in Line
20 to T>, and let it run.

10 PLAY"T2"
20 PLAY "T>; A;A#;A-"

You started out with T2, right? The computer multiplied that value by 2 to 4, 4 x 2 to 8, 8
x 2 to 16, and so on until it reached 255.

You can slow the tempo quickly by using "<" to divide the current tempo by 2.

10 PLAY"T255"
20 PLAY "T<; A;A#;A-"

Remember, you can do the same thing with L, V. and Oto cl,ange the note length, the volume,
and Hie octave.

Roll Over, Beethoven
(An Example of the PLAY Command)
After all this hard work, you deserve a serenade Type the followinq program c1nd sec 11 you
can name this tune.

101

16 I Music

102

5 C LS
100 A$= "T5;C;E;F;L1;G;P4;L4;C;E;F;L1;G"
105 B$ = "P4;L4;C;E;F;L2;G;E;C;E;L1;D"
110 C$ = "P8;L4;E;E;D;L2.;C;L4;C;L2;E"
115 D$ = "L4;G;G;G;L1 ;F;L4;E;F"
1 20 E$ = "L2; G; E; L4; C; L8; D; D+; D; E; G; L4; A; L 1; 03; C"
125 X$ = "XA$;XB$;XC$;XD$;XE$;"
130 PLAY X$

Do you recognize the song? Dress it up by adding these lines:

1 0 PRINT@ 96, STRING$ (32,"*")
20 PRINT@ 167, "WHEN THE SAINTS"
30 PRINT@ 232, "GO MARCHING IN"
35 PRINT@ 288, STRING$ (32,"*")
40 FORX=1 T0500: NEXTX
45 C LS
50 PRINT@128, "OH WHEN THE SAINTS"
55 PRINT@169, "OH WHEN THE SAINTS"
60 PRINT@192, "OH WHEN THE SAINTS GO MARCH IN IN"
65 PRINT@224, "YES I WANT TO BE IN THAT NUMBER"
70 PRINT@ 256, "WHEN THE SAINTS GO MARCH IN IN"

Run the program now and sing along with the color computor What? You liked it so much
you want to hear 11 again Okay add lhcsc lines

150 CLS
160 PRINT@ 130, "PLAY IT AGAIN, COCO"
165 FOR X = A TO 500: NEXT X
170 CLS
175 PRINT@233, "I'D BE GLAD TO"
180 FOR I= 1 TO 500: NEXT I
185 GOTOS

DO IT YOURSELF PROGRAM 16 ?

Our rendition of "Saints" sounds fine, but it isn't true New Orleans style. Jan it up
to suit your own musical tastes. Try changing octavos or adding a few sharps or tints

DO-IT-YOURSELF PROGRAM 16-3

Try some musical arrangements of your own. We've included several in the Sample
Programs at the back of the book.

Learned in Chapter 16

BASIC WORDS

PLAY

17 / PICTURES

This chapter has you draw a picture on the low-resolution text screen. You start by setting
a tiny dot on the screen. You then set more dots, and finally, you combine these dots into
a picture.

Before you start, be aware that this chapter describes the most primitive way of drawing pictures
on the screen. Parts 3 and 4 of this book deal with the color computer's sophisticated graphics
capabilities.

Setting A Dot
(The SET Command)
To set a dot on the screen, you use the SET command. The syntax for SET is

s ET (x,y,c) Sets a dot on the low-resolution text screen al Column x, Row y, using
Color c. x is a nurnhcr in the ranqe 0-63, y is a number in the range 0-31, and c
is a number in the range 0 8.

You can use Sc T only on the low-resolution text scre:cn. So, move to the low-resolution te:xt
screen by typing

WIDTH 3 2 IE-N:t1::_RI

Then, type anrl run this program

10 CLS0
20 SET(0,0,3)
30 GOTO 30

See the blue dot at the top lett corner'? To put tt1e dot on the bottom right corner, change
Linc 20, and run the program:

20 SET(63,31,3)

Want to center the do\? Use this for Linc 20:

20 SET(31,14,3)

SET tells the computer to set a dot on your 32 x 16 low-resolution text screen.

BASIC makes it easy to control the screen. SET only needs three numbers to work its magic.
Lets see how it all works

103

17 I Pictures

104

The first two numbers specify the column and row position, using the following SET/RESET gnd:

'I:
, 111+ I

t-++++-t--H-H-+++-+-11-++++t--t-+-+--+·t- ~ ~
t---t-+-+-+-+-+-+-+-+-+-+-+-+-t---t-t---t-t---t-t---t-t---t-t---t-t---t-H--H--H--t-++

i I

i i I I

I I

::

16
H--f-H-H-+--1

ii
. I i I

I I
i H

I
t---+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--.- r-++

t-+-1-+-ir+-i--+-+--+-+-+-+-+-+-+--+--: +_ - + ; t'
i: i.

The last number specifies the color, using the palette as shown in this table:

Table 17-1
The SET Command's Use of the Palette

Color# Palette Slot Standard Color

0 8 Black
1 0 Green
2 1 Yellow
3 2 Blue
4 3 Red
5 4 Buff
6 5 Cyan
7 6 Magenta
8 7 Orange

SET uses the palette in the same way as CLS. For example, SET(31, 14,8) and CLS8 both
produce the same color. which, if you are using the standard colors, is orange.

1 7 I Pictures

Look at the grid that we showed earlier in this chapter. Notice that the darker lines group
the dots into ''blocks." Each block contains four dots. For instance. the block in the middle
of the grid contains these four dots:

Position
Position
Position
Position

Horizontal
32
33
32
33

Each dot within a block must either be the same color or black.

Change line 30 to this:

30 SET(30,14,4)

Vertical
14
14
15
15

Run the program. What happened? Line 30 asked the computer to set two different colored
dots (red and blue) within the same block. Because the computer couldn't set them in different
colors, it set them both the second color, red.

Type and run t11is program:

30 SET(34,14,4)

Because the dot iri Position 34, 14 is i11 a diffm(int block. the computer can set the two dots
in diffcmnt colors

The Computer's Face
(An Example of SET)
In this example. we use SET to draw a picture of the computer's face. ,irst, be sine youi
computer 1s set up to produce the standard colors.

• 11 you i1avc an RGB monitor, type P/\L,TTE RC,B .ENTER

• 11 you have a CMP monitor and used the PALETTI- comrnall(J to alter the palette, type
PALFTTE CMP '.EJ[t!::RJ

Now. type these lines to create the top and bottom of the head

5 CL S 0

1 0 FOR H = 15 TO 48
20 SET(H,5,5)

30 SET(H,20,5)

40 NEXT H

105

17 I Pictures

106

Run the program You see buff lines, rather than white.

Lines 10 and 40 set up a FOR/NEXT loop for H, making the horizontal positions 15 through
48 for the top and bottom lines. Line 20 sets the top line. Line 30 sets the bottom line.

To set the left and right sides of the head, type these lines:

50 FORV=5TO20
60 SET(15,V,5)
70 SET(48,V,5)

80 NEXT V

To make an orange nose, type:

90 SET(32,13,8)

To make a red mouth, type

100 FORH=28T036
110 SET(H,16,4)

120 NEXTH

To make blue eyes, type

130 SET(25,10,3)
140 SET(38,10,3)

150 GOTO150

nun the program.

17 I Pictures

A Blinking Computer
(The RESET Command)
By using another command called RESET, you can make the computer blink. The syntax
of RESET is:

RE s ET x,y Resets a dot on the low-resolution text screen at Column x, Row y. x
is a number in the range 0-63. y is a number in the range 0-31.

Type:

150 RESET(38,10)

Run the program. You now see the same face, except the right eye is missing. RESET erases
the dot in Position 38, 10. That's the right eye.

To make the eye blink, set and reset the eye by adding this line:

160 GOTO140

Reading the Dots
(The POINT Function)
Now that you have learned how to SFT and RFSFT poirits, let's learn how to read them, too.
The POINT function lets you read each graphic character on the screen. and tell whether
it is SET, RESET, or 11 there is a text character in that posItIon. The syntax for POINT is

POINT Cx,y)
Restores information on point x,y from the low resolution text screen.

- 1 Poiril is part of a text character.
O Point Is RESET.
Code Point is SET (Code Is color code).

I et's use POINT in a program. First, we'll clear the screen, thm1 draw r1 horizontal line on
it Then we'll use POINT to read each position on the screen and reverse them Type in

10 CLS0
20 FORZ=0TO63
30 SET (Z,16,2)
40 NEXT Z
100 FOR X = 0 TO 63
110 FORY=0TO31
120 A= POINT(X,Y)
130 IF A= -1 THEN 200
140 IF A= 0 THEN SET (X,Y,2):GOTO 200
150 IFA=2THENRESET(X,Y)
200 NEXTY,X
210 FOR T = 1 TO 500
220 NEXT T

107

1 7 I Pictures

Run the program and watch POINT at work.

108

Learned in Chapter 17

COMMANDS

SET
RESET

FUNCTIONS

POINT

18 / THE TALKING COMPUTER
TEACHER

Who says the computer can't talk? It's voice, though, will sound similar to your own. You can
make the computer talk by using your own tape recorded voice. Your programs will be a
lot more interesting and fun when they talk back to you. Let's get started.

Unplug the three pronged cable corinecting your tape recorder to tt1e computer. Pl1Jg a
microphone into the tape recorder if it doesn't have one built 1n Put a blank tape into tl1e
tape recorder. Press ttie PLAY and RECORU buttons on the recorder and st;1rt talking Say
whatever you want Press tile STOP button on the recorder. and REWIND the tape. Type
in l11is program:

5 CL S
10 INPUT "PRESS <ENTER> TO HEAR THE RECORDING";A$
20 MOTOR ON
30 AUDIO ON

Unplug the microphone from the tape recorder. Plug the three-pronged cable from the
computer into the tape recorder. Press the PLAY button on the tape recorder. Turn up the
volume on your display or amplifier. RUN the program. You will hear your own voice.

MOTOR ON

AUDIO ON

Turns on the tape recorder

Connects the tape recorder sound to the display speaker or amplifier.

There is a way to program the tape recorder to turn off, but for now press the computer RESET
button. The RESET button is on the back right side of the computer, when you are facing
it. LIST your program. RESET did not erase it. Add these program lines:

3 5 C LS
40 A$= INKEY$
50 PRINT@ 225, "PRESS <X> TO TURN OFF RECORDER"

60 IF A$<> "X" THEN 40
70 AUDIO OFF

80 MOTOROFF

109

18 I The Talking Computer Teacher

110

Prepare your tape for playing and RUN the program.

Line 40 tells the computer to read the keyboard without pausing like INPUT.

Line 60 looks at what line 40 reads, and decides whether or not you pressed the X key. If
you did not press the X key, the computer goes back to line 40 and looks again. If you did
press the X key, the computer goes on to line 70.

Line 70 turns off the tape recorder sound.

Line 80 turns the tape recorder off.

Now that you understand how it works, you are ready to record the computer teacher. Here
is the script:

"Hi, I'm your talking computer teacher. The first lesson is math. I will give you a series
of ;:iddItIon problems. Press the 'W' key ... "

(Pause for a few seconds)

"You will hear tt1at every time that you give me an incorrect answer. Press the 'R' key ... ··

(Pause for a few seconds)

''I will make that sound every time you answer correctly. You will not hear rny voice again
until you give me three correct answers. Good luck. Press the 'G' key to begin."

(Pause for a few seconds)

"Hello again I hope that you enjoyed your lesson. Press the 'E' key to turn off the tape
recorder."

18 I The Talking Computer Teacher

Finished? The next thing to do is to draw the talking teacher. Here is our grid of what it will
look like

Draw the mouth first. Erase memory and type:

5 C LS 0
200 FORH=26T035

2U FOR V = 16 TO 21

220 SET(H,V,4)

230 NEXTV,H

That's a closed mouth. To make It talk, type.

500 RESET (30, 18): RESET (30, 19)

510 GOTO 200

RUN the program. Now draw the face. Type:
100 FOR H = 16 TO 4 7
110 FOR V = 4 TO 23
120 SET(H,V,5)

130 NEXT V,H

Draw the body. TypP.:

140 FORH=0T060STEP4

150 FORV=24T031
160 SET<H,V,2) :SET(H+1,V,2)

170 SET(H+2,V,7):SET(H+3,V,7)

180 NEXT V,H

Draw the eyes. Type:

300 FORV=10T011

310 SET(24,V,3):SET(25,V,3)
320 SET(36,V,3):SET(37,V,3)
330 NEXT V
340 PRINT@ 0,"THE TALKING COMPUTER TEACHER"

RUN the program. Make the eyes blink. Type:

505 IF RND(4) = 4 THEN SET(24,10,5) :SET(37,10,5)

111

18 I The Talking Computer Teacher

112

RUN the program. fhat is what the talkinq tead10,r looks like. Now, teach the teacher to talk.
Type:

400 MOTOR ON
410 AUDIOON
420 A$== IN KEY$
430 IF A$= "G" THEN MOTOR OFF:END
440 IF A$= "W" THEN MOTOR OFF:GOSUB 2000
450 IF A$= "R" THEN MOTOR OFF: GOSUB 3000

2000 FOR T = 176 TO 86 STEP -1 ID
2010 SOUND T,1
2020 NEXT T
2030 RETURN
3000 FORT== 86 TO 176 STEP 10
3010 SOUND T,1
3020 NEXT T
3030 RETURN

Rewind the tape in your tape recorder. Connect the three pronged cable from the tape recorder
to the computer. Press the PLAY button on the tape recorder RUN the program. Do what
the talking teacher tells you to do.

Is everything working so far? When you press the W key you should hear ascending tones.
Pressing the R key makes descending tones. If you press the G key, the program ends Now,
program the computer to give you arithmetic problems. Type:

430 IF A$= "G" THEN MOTOR OFF:GOSUB 1000
!.,60 IF A$:: "E" THEN MOTOR OFF:END

1000 X: RND(100) :Y = RND(100)

1010 PRINT@ 0,"WHAT IS" X "+" Y

Notice !me 1015. It sets the PRINT pos1/!on
for what you type in line 1 020.

1015 PRINT@20,

1020 INPUTA
1030 IF A= X + Y THEN GOSUB 3000:C = C + 1
1040 IF A<> X + Y THEN GOSUB 2000:PRINT@ 0,"WRONG -

THE ANSWER IS" X + Y
1050 IF C = 3 THEN RETURN
1060 FOR P = 1 TO 500: NEXT P

1070 GOTO 1000

18 I The Talking Computer Teacher

Rewind the tape and press PLAY, then RUN the program. Watch, listen, and learn with the
talking computer teacher.

Learned in Chapter 18

COMMANDS

AUDIO
MOTOR

113

19 / JOYSTICKS

If you have Joysticks. connect them now by plugging them into the back of your computer.
They fit in only the correct slots, so don't worry about plugging them into the wrong places.

This chapter shows how to use joysticks in a BASIC program If you do not have joysticks,
skip this chapter

The Floating Switches
(The JOYSTK Function)
You use the JOYSTK function to find the position of the Ioyst1cks floating switches. The syntax
of JOYSTK is

Jo Y s TK(n) Returns the position of n, a floating switch on one of the Joysticks.
n is a number from O to 3·

n = O Right Joystick's horizontal coordinate.
n = 1 R1gnt Joystick's vertical coordinate.
n = 2 Left Joystick's horizontal coordinate
n = 3 Left Joystick's vertical coordinate.

To see how JOYSTK works, run this short program

1 0 1<1 IDT H 32
20 PRINT @ 0, JOYSTK(0);
30 PRINT @ 5, JOYSTK(1);
40 PRINT @ 1 0, JOYSTK(2);

50 PRINT @ 1 5, JOYSTK(3);

60 GOTO 20

115

19 I Joysticks

116

See the four numbers on your screen7 They're the horizontal and vertical positions of the two
Joysticks' floating switches

Grasp the right joysticks floating switch. (The right joystick Is the joystick that is connected
to the RIGHT JOYSTICK socket on the back of the computer.) Keeping it in the center. move
It from left to right. The first number on the screen changes from Oto 63, going through all
the numbers in between.

Move the left joystick's floating switch from left to right. The third number on the screen changes.

Now, move the floating switches up and down, keeping them in the center. Moving the right
Joystick up and down d1anges the second number from 0 to 63. Moving the left 1oyst1ck up
and down changes the fourtr1 number from 0 to 63.

This is how the computer reads the Joysticks' positions:

JOYSTK(0) and JOYSTK(1) read the right joyst1ck's positions

• JOYSTK(0) reads the horizontal (left to right) coordinate.

• JOYSTK(1) reads the vertical (up and down) coordinate.

,JOYSTK(2) and JOYSTK(3) read the left joystick's positions

• JOYSTK(2) reads tho hor11ontal coordinate.

• ,JOYSTK(3) reacls ll1e vert1c,1I r,oordinate

Whenever you read ,my ot the Ioyst1cks, you must read ,JOYSTK(0). Tu fi11d out for ymnself
delete Linc 50 and run the proyrarn. It works almost tt1e sarne, except it docsn t 1·ead JOYSTK(3),
the vertical positio11 of your Iott Ioystic:k

Uclcto L 111e ?O w1d cl1ariqe Linc (_j(l

60 GOTO 30

nun tho program Move all ll1c: switchos mound Tliis time the progrc1m cloesn·t work at all.
The computer won't rmd ,my coorcl111ates u11less you first have It read JOYSTK(0) Typo these
lines and run the prograII1.

20 A= JOYSTK(0)
60 GOTO Zill

Although the computer is not printing JOYSTK(0)'s coordinates, it's still read111g thorn. Therefore,
it can read the other joystick coordinates. Whenever you want to read JOYSTK(1). JOYSTK(2),
or JOYSTK(3), you first need to read JOYSTK(0)

Painting with Joysticks
(An Example of JOYSTK)
Type and run this program

10 CLS(0)
20 H=JOYSTK(0)
30 V=JOYSTK(1)
40 IFV>31THENV=V-32
80 SET(H,V,3)
90 GOTO 20

19 I Joysticks

Use the revolving switch of your right joystick to paint a picture (Move the switch slowly so
that the computer has time to read its coordinates.)

Line 20 reads H, the horizontal position of your right Joystick. This can be a number 1n the
range O to 63.

Line 30 reads V, its vertical position. This also can be a number in the range Oto 63. Since
the highest vertical position on your screen is 31, Line 40 is necessary It makes V always
equal a number in the range O to 31.

Line 80 sets a blue dot at H and V.

Line 90 goes back to get the next horizontal and vertical positions of your joysticks

This program uses only the right joystick. Perhaps you could use the left one for color. Add
these lines and run the program:

50 C = JOYSTK(2)
60 IF C <31 THEN C =3
70 IFC>ac31THENC=4
80 SET(H,V,C)

Move your left joystick lo lhfi right, arid the computer makes C equal to 4. The dots it sets
are red Move 1t to the left. and the computer makes C eq110I to 3. I he dots it sets are blue.

The Joystick Buttons
(The BUTTON Function)
Want to use your Joystick huttons? Add these lines to tile µrogram

90 IF BUTTON(0)=1 THEN 10

100 GOTO 20

Hun the program arid start "pair1t1rig." Press the right button when you want to clear the screen
anrl start again (If you have a joystick with two buttons, press the hutton on the right side
of the joystick.)

The syntax for the GUTTON function 1s

Bu TT o N (n) Returns a 1 if Button n 1s on, and a O if button n is off. n is a number
from 03·

n = 0 Right Button 1 (or single-button Joystick)
n = 1 Right Button 2
n = 2 Left Button 1 (or single button joystick)
n = 3 Left Button 2

117

19 I Joysticks

118

Learned in Chapter 19

FUNCTIONS

JOYSTK
BUTTON

PART 3 / DRAMATIC IMAGES

Are you ready for a dramatic leap? In this part of the book you learn to use a new screen
designed solely for graphics, the low-resolution graphics screen.

Using the low-resolution graphics screen, you'll find it easy to

Draw a circle

Paint a box

Move a picture

And much more!

119

20 I LET'S GET TO THE POINT

One of the most exciting features of the color computer is its ability to display precise, varied,
and easy-to-use graphics.

Just how easy is it to display these graphics? Well, let's start with the most basic element.
a point or a dot, and build from there.

But First, A Word About Color ...
(Using Palette to Set up Standard Colors)
We do a lot of talking about colors in this part of the book, and it would help if your colors
agree with ours. So, to avoid confusion, take a minute to be sure your computer's palette
is set to produce the standard colors.

• If you are using an RGB monitor, type p ALE TT E R GB (ENTER!

• If you are using a CMP monitor and have altered the palette, type PA LET TE CMP
.f:N_T_ER

Now, proceed vv1th your first dot.

Your First Dot (or Point)
(The PSET Command)
Your computer makes it simple to put a dot on the screen. Type the following program and see

2 WIDTH 32
5 PMODE1,1

10 PCLS

20 SCREEN 1,1

30 PSET (10,20,8)
40 GOTO 40

121

20 I Let's Get to the Point

But What About the Color?
(Specifying Colors with PSET)
By now, you probably figured out that you can change colors by changing c to a different
number in the range 0-8.

Within limits, this is true. However-and it's a big however-you can produce only four colors.

There's a good reason for this, which we cover in Chapters 21 and 22 when we discuss
PMODES and color sets. For now, don't worry if you can't always get the color you want.

In your current PMODE and color set, you can get these colors

Color Palette Standard
Number Slot Color

Color 1 or 5 Slot 4 Butt
Color 2 or 6 Slot 5 Cyan
Color 3 or 7 Slot 6 Magenta
Color 0, 4, 8 Slot 7 Orange

For example, in your current PMODE and color set, Color 1 and Color 5 both specify the
color stored in Slot 4. It your palette Is set up to produce the standard colors, this color Is butt.

If you want, try changing the dots' color to cyan (2 or 6), and magenta (3 or 7). Then. change
the color back to orange (0, 4, or 8) before proceeding.

Now You See lt ... Now You Don't
(The PRESET Command)
Any guesses how to turn off a dot? Here's a hint It's easy, and it has to do with color.

You don't really turn off the dot; you simply change its color so it blends into the background.
You do this with a new command, PRESET (point reset). PRESET "knows" you want to use
the background color, so you don't need to give the color.

PRE s ET (x,y) resets a point on the current low-resolution graphics screen to the
current background color.

x is the horizontal position (0 to 255).
y is the vertical pbsition (0 to 191).

123

20 I Let's Get to the Point

124

DO-IT-YOURSELF PROGRAM 20-1

Do you remember the RND (random) function from Part 2? It not, review it; then write
a short program that tills the screen with random dots of random colors.

Finding a Point
(The PPOINT Function)
PPOINT is closely related to PSET and RESET. It lets you find the color of any dot on the screen.

PP o INT (x,y) tells what color a point is on the current graphics screen

x 1s the point's horizontal position (0 to 255).
y 1s the point's vertical position (0 to 191)

This example shows how PPOINT can be handy to include in a program

2 WIDTH 32
5 PMODE 3,1
10 PCLS
15 SCREEN1,1
30 X=RND(10)
35 Y=RND(10)
40 C = RND(8)
50 PSET (X,Y,C)
60 IF PPOINT (5,5)=8 THEN GOTO 105
70 GOTO 30
105 CLS
110 PRINT@ 100, "POSITION (5,5) IS NOW COLOR 8"

The computer fills a 1 Ox 10 square (in the upper left corner of the screen) with random colored
dots. When the dot in Position (5,5) is Color 8, the computer displays the message Po s IT Io N
(5,5) IS NOW COLOR 8.

Learned in Chapter 20

COMMANDS

PSET
PRESET

FUNCTION

PPOINT

21 / HOLD THAT LINE!

So, now you can put a dot on the screen-even several dots. But what kind of starting point
is that, you might wonder, when you're eager to create some "real" graphics.

To answer that question, think of some of your very first drawings on paper. Remember the
drawings you made by connecting a bunch of dots? That is exactly how your computer draws
You tell it which dots to connect. and it draws a line.

Drawing a Line
(The LINE Command)
One way to tell the computer to draw a line between dots is to use the LINE command. To
see LINE at work. modify the program that set the dots. (For the sake of convenience, call
the program Lines.)

First change Line 30 as follows:

30 LINE {0,0) - (255,191',PSET

Then, delete Line 35 by typing

35 (ENTER)

Your program now reads

2 WIDTH32
5 PMODE1,1
10 PCLS
20 SCREEN 1,1
30 LINE {0,0)-(255,191),PSET
40 GOTO 40

Now, run the program The screen shows a line that runs from the upper left to the lower
nght corner.

How about changing the direction of the line so that 1t runs from the lower left to the upper
nght corner?

125

21 I Hold That Line!

126

You probably already figured out this one, but-just in case-here's the new Line 30

30 LINE (0,191)-(255,O),PSET

Drawing Two Lines
(An Example of LINE)
What about intersecting lines?

Insert the original Line 30 that drew the first line. (First, renumber it as Line 25.) Then run the
program. Does your screen display two lines intersecting in the center?

In fact. you can put as many lines on the screen as you want, once you learn the syntax.
Here it is:

LINE (x1,y1)-(x2,y2),a.b draws a line or a box on the current graphics screen

(x1 ,y1) is the line s start point.
(x2,y2) is the line's end point
a is either PSET (set) or PRESET (reset).
b is either B (box) or BF (box filled). This is optional.

Note: You can omit the start point as discussed below.

At times, you might want to start a second line where the first line ends. To do so. omit the
start point. For example:

30 LINE (0,0)-(255,191),PSET
35 LINE-(191,0),PSET

Line 20 draws a line from (0,0) to (255191). Line 30 then draws another line, this one from
(255,191) to point (191.0).

Erasing a Line
(The PSET and PRESET Options)
Maybe you noticed that LINE does not have a color option. Instead, it includes PSET and
PRESET options that let you specify whether you want to use the foreground or background
color.

Take another look at the program lines that created the intersecting lines

30 LINE (0,0)-(255,191),PSET
35 LINE (0,191)-(255,0),PSET

From your experience turning on and off dots in Chapter 20, can you guess what would happen
if you change PSET to PRESET? Try it and see. Type:

30 LINE (0,0)-(255,191),PRESET

21 I Hold That Line!

If you guessed that the line that ran from the upper left to the lower right would disappear,
you were right.

• PSET sets the line using the foreground color.

• PRESET resets the line to the background color.

Before proceeding, change the PRESET parameter in line 30 back to PSET.

Boxing a Line
(The B Option)
We've almost made it through LINE, but a few items still need to be (to B?) covered.

B stands for box. With low-resolution graphics, you can make a box without writing a separate
program line for each side. All you have to do is specify two opposing corners of the box,
and add ,B to the statement. Then when you run the program, your computer creates a box
instead of a line.

To illustrate, call your Lines program back into service.

2 WIDTH 32

5 PMODE1,1
10 PCLS

20 SCREEN 1, 1
25 LINE (0,0)-(255,191),PSET

30 LINE (0,191)-(255,0),PSET

40 GOTO 40

As is, the program creates two lines that intersect in the center of the screen. Delete Line
30 and add the suffix ,B to Line 25.

25 LINE (0,0)-(255,191),PSET,B

Now see what happens when you run the program. Did you box yourself in?

DO-IT-YOURSELF PROGRAM 21-1

Write a program that creates a box with a pair of lines intersecting in the center. We
tell you why these are the only available colors when we discuss PM ODE and SCREEN
in the next chapters.

Fill A Box
(The BF Option)
We're almost at the end of the LINE, so let's try to finish.

If you refer to the format of LINE, you can see you have the option of adding F to the optional
suffix ,B.

F lets you fill the box with the foreground color. Try it. Change Line 25 as follows:

25 LINE (0,0)-(255,191),PSET,BF

How about that! You see a big box filled with color.

127

21 I Hold That Line!

128

DO-IT-YOURSELF PROGRAM 21-2

Ready to try your own Lines program? Can you build a house? Start with Lines 5
10, and 20 of the Lines program and take it from there. Be sure to add

• A front door. of course

• At least one window.

• A chimney.

The overall design is up to you (Cape Cod, Ranch, or whatever), but we've included
a sample house (good view, no pets) program in the back of the book. Don t worry
about doorknobs; we add those later.

Be sure to save this program on cassette, since you will need it later.

DO-IT-YOU RS ELF PROGRAM 21-3

This is a real challenge.

As you know, a straight line is the shortest distance between two points. Well. put
a few extra miles between our two points. Use LINE to draw a crooked line.

To get started, use Lines 5. 10, and 20 from the Lines program.

Learned in Chapter 21

COMMAND

LINE

22 I THE SILVER SCREEN

Are you ready to find out about another command? If so. turn down the lights, because we're
about to raise the curtain on the silver screen.

..

Displaying the Graphics Screen
(The SCREEN Command)
Take a look at the Lines program for a second. Concentrate on the SCREEN statement in
Line 20

2 WIDTH 32
5 PMODE1,1
10 PCLS
20 SCREEN 1, 1
25 LINE (0,0)-(255,191),PSET
30 LINE (0,191)-(255,0),PSET
40 GOTO 40

SCREEN tells the computer to display a screen. What kind of screen 1t displays depends on
the instructions you give it

• First. you tell the computer whether to display a text or a graphics screen.

• Second, you tell the computer what color set to use

s c REEN type, color set displays the current graphics or text screen

type 1s O (text screen) or 1 (graphics screen)
color set is O or 1

Note: If type or color set is any positive number greater than 1 your computer uses 1.

129

22 I The Silver Screen

130

In the Lines program, change Line 20 to:

20 SCREEN 0,0

Then, run the program. Does your computer "hang up"? (Press I BREAK: to regain control.)

Actually, the computer ran Lines, the same as before. This time, it did not show you the graphics
screen. You asked to see the text screen instead.

Now change Line 20 to:

20 SCREEN 1, 0

Notice that you have the graphics screen again, but this time, the color set is changed.

At first glance, it appears that you have only two color choices, 0 and 1. Actually, you're
choosing from a much greater variety. You're switching color sets, not individual colors.

Tables 22.1-22.2 shows the two color sets and how the computer uses the palette in each
color set.

Color
Number

Color 1 or 5
Color 2 or 6
Color 3 or 7
Color 0, 4, 8

' Default background color
* • Default foreground color

Number

Color 1 or 5
Color 2 or 6
Color 3 or 7
Color 0, 4, 8

* Default background color.
* * Default foreground color.

Table 22.1
Color Set O

Palette
Slot

Slot O*
Slot 1
Slot 2
Slot 3' *

Table 22.2
Color Set 1

Slot

Slot 4 *
Slot 5
Slot 6
Slot 7 * *

Standard
Color

Green
Yellow
Red
Blue

Color

Buff
Cyan
Magenta
Orange

For example, in Color Set 0, the computer uses the color stored in Slot 1 as the default
background color. Assuming your computer's palette is set to produce the standard colors,
Color Set O produces a green background.

DO-IT-YOURSELF PROGRAM 22-1

Write a program that switches from the text screen to the graphics screen. You might
want to put a loop in the program so that it changes the color set after it loops through
the program. This way. you can see all the SCREEN features at work.

22 I The Silver Screen

Changing the Foreground and Background Colors
(The COLOR Command)
Notice that we use the word default to describe the foreground and background colors. The
COLOR command lets you change these defaults.

The syntax for COLOR is:

COLOR c1,c2 sets the foreground and background colors on the current graphics
screen

c1 is the foreground color (0 to 8).
c2 is the background color (0 to 8).

For example, insert Line 6 into the Lines program:

6 COLOR6,7

Run the program. The foreground color is Color 6. The background color is Color 7.

Do you want to reverse the colors? Change Line 6 to

6 COLOR 7, 6

Before proceeding, delete Line 6 from your program.

Start With the Right Text Screen
(The WIDTH Command)
Now, look at another command in Lines

2 WIDTH 32

This line is purely a precaution. We want to be sure that when you run Lines, you are not
at one of the high-resolution text screens (the 40 x 24 or 80 x 24 screen).

Why is this important? BASIC is unable to produce low-resolution graphics on a high-resolution
text screen.

To see for yourself, delete Line 2, move to a high-resolution text screen, and run the program.

DEL 2 I ENTER I
WIDTH 40 (ENTER)
RUN (ENTER)

Your computer appears to hang up. It ran Lines, but it was unable to execute the SCREEN
command from the high-resolution text screen.

Move back to the low-resolution text screen, and run the program.

2 WIDTH 3 2 I ENTER I

131

22 I The Silver Screen

132

Clearing the Graphics Screen
(The PCLS Command)
The Lines program looks like this:

2 WIDTH 32
5 PMODE1,1

10 PCLS
20 SCREEN1,1
25 LINE (0,0)-(255,191),PSET

30 LINE (0,191)-(255,0),PSET

40 GOTO 40

Look at Line 10. It contains the PCLS command This command simply clears the graphics
screen. (It serves the same function for the screen as CLS does for the text screen.)

Here Is the syntax for PCLS

Pc Ls color clears the current graphics screen

color is 0-8 If you omit the color. the computer clears the screen to the current
background color.

The Lines program doesn't make use of PCLS's color option so the computer uses the current
background color. Retype Line 10. and run the program

10 PCLS6

The background is now Color 6.

Learned in Chapter 22

COMMANDS

SCREEN
WIDTH
COLOR

PCLS

23 / MINDING YOUR PMODES

Whenever you write a low-resolution graphics program you need to consider these three
features

• Screen positions-You can use as many as 256 x 192 positions at a time.

• Colors-You can use as many as four colors at a time.

• Screens-You can use as many as eight screens at a time.

The more you use of one feature (such as screen pos1t1ons), the less you can use of the other
two features (colors and screens).

PMODE, the unknown command in the Lines program, sets the features you want to use.
You can choose from among five PMODE settings, shown in Table 23.1.

Table 23. 1 / PMODE Settings

Positions Colors Screens

PMODE 4 256 X 192 2 2
PMODE 3 128 X 192 4 2
PMODE 2 128 X 192 2 4
PMODE 1 128 X 96 4 4
PMODE 0 128 X 96 2 8

133

23 I Minding Your PMOOES

134

Lines in PMODE 4
(Changing PMODE Settings)
Bring back Lines and see what it looks like in a different PMOOE In case you've forgotten
Lines, here it is:

2 WIDTH 32
5 PMODE1,1
10 PCLS
20 SCREEN1,1

Now change from PMOOE 1 to PMODE 4

5 PMODE4,1

Run the program. You can see two feature changes right away

• The lines are much finer because you shifted from a 128 x 192-position PMOOE
to a 256 x 192-position PMODE.

• The color changes because you shifted from a 4-color PM ODE to a 2-color PMOOE.

Changing Available Positions
(PMODE Positions)
Notice that when you shift to a different PMOOE you do not have to change the positions
of any of your dots. BASIC lets you use the same screen grid (a 256 x 192 grid), no matter
how many screen positions you actually have available.

For example, (128,96) is always the center of the screen, no matter which PMOOE you're
using, and (256,192) is always the bottom-right corner of the screen. The way that BASIC
uses the screen grid, depends on which PMODE you are using.

• In a 128 x 96-position PMODE, BASIC sets four dots for each dot you specify. For example,
if you ask BASIC to set Dot (0,0), it also sets (1,0). (1,1) and (0,1).

• In a 128 x 192-position PMODE, BASIC sets two dots for each dot you specify. For
example, if you ask BASIC to set Dot (0 0), it also sets (1.0).

• In a 256 x 192-position PMODE, BASIC sets one dot for each dot you specify.

23 I Minding Your PMODES

Therefore, a diagonal line in a 128 x 96-position PMODE looks more like a stairstep on the
screen than one drawn in a 256 x 192 position PMODE.

--■
~f--- ■

■
~ 0- ■

■
■
■
■ --■

128 x 96-Position PMODE 256 x 192-Position PMODE

The number of different screen positions you can use in a 128 x 96-position PMODE is only
one-fourth what you can use in a 256 x 192-position PMODE.

High resolution

Medium resolution

Low re,olution

Screen Positions
A\ailable

256 X 192

128 X 192

128 X %

Size of
Each Dot

D

D
HJ

The "Graphics Screen Worksheets. · in the "Odds and Ends" section show the positions
available in each PMODE.

Changing Color Modes
(PMODE Colors)
The 2-color mode, like the 4-color mode, has two color sets that you can use. Tables 23.2
and 23.3 show the two color sets you can use in a 2-color PMODE.

Color
Number

Color 2, 4, 6, 8
Color 1, 3, 5, 7

* Default background color.
* * Default foreground color.

Table 23.2
Color Set 0

Palette
Slot

Slot 8 *
Slot 9* *

Standard
Color

Black
Green

135

23 I Minding Your PMODES

136

Table 22.3
Color Set 1

Color Palette Standard
Number Slot Color

Color 2, 4, 6, 8 Slot 10 • Black
Color 1, 3, 5, 7 Slot 11 " Buff

* Default background color.
* * Default foreground color.

Compare these to the tables in the last chapter which show the two color sets you can use
in a 4-color PMODE.

PMODE Boxes
(An Example of Changing PMODES)
Here is a program that shows a box cycle through each mode. Notice that with each mode
the box's lines go from thick to thin. and its colors go from two colors to four colors.

2 WIDTH 32
5 FORMODE=0TO4
10 PMODE MODE, 1
20 PCLS
30 SCREEN1,1
40 LINE (75,50)-(125,100),PSET,B
50 FOR Y = 0 TO 500: NEXT Y
60 NEXT MODE
70 GOTO 5

This is PMODE's syntax. Chapter 25 shows how to use the second parameter, start page.

PMODE mode.start page sets the current graphics screen in graphics memory

mode specifies the features you want to use in graphics memory. If you omit
mode, the computer uses the last mode or (if none) Mode 2.

start page specifies on which page in graphics memory to start a graphics screen.
If you omit start page, the computer uses the last start page or (if none)
Page 1.

Therefore, if you omit PMODE, the computer uses PMODE 2, 1.

Learned in Chapter 23

COMMAND

PMODE

24 / A DIFFERENT
USE OF COLOR

In all our graphics programs so far, we stuck to the standard colors.

In this chapter, we introduce nonstandard colors. Before reading this chapter, you might want
to refer to Chapter 8 to refresh your memory on color codes and the palette.

Lines in Hot Pink
(Graphic's Use of the Palette)
Take another look at Lines. Use the version that has a PCLS6 command.

2 WIDTH32

5 PMODE1,1
10 PCLS6

20 SCREEN1,1
25 LINE (0,0)-(255,191),PSET

30 LINE (0,191)-(255,0),PSET

40 GOTO 40

With the standard palette, the PCLS6 command makes the screen cyan. But, by storing hot
pink in the palette slot that creates Color 6, the PCLS6 command makes the screen hot pink.

137

24 I A Different Use of Color

138

Try it. The steps are

1. Note which PM ODE and color set you are using.

The above version of Lines is using a 4-color PM ODE (PMODE 1.1) with Color Set 1
(SCREEN 1, 1)

2. In the PMODE and color set you are using, find out which palette slot creates Color 6.
(See Tables 22.1-22 2.)

3. Look up the color code for hot pink in the "Color Codes" section In the back of the book.
Store this code in the proper palette slot with this program line

8 PALETTE 5, Color Code

4. Run the program The crossing lines are orange, as before, but the background screen
is now hot pink.

DO-IT-YOURSELF PROGRAM 24-1

Change Line 5 so you are in a 2-color PMODE

5PMODE4,1

Now, figure out how to make the screen hot pink .

. . . And a Dash of Charcoal Brown
(An Example of Medium Graphics and the Palette)
All low-resolution graphics commands use the palette in the same way. For example. change
the PCLS command In Line 1 O to

10 COLOR7,6

Lines now looks like this

2 WIDTH 32
5 PMODE1,1
10 COLOR 7,6
20 SCREEN1,1
25 LINE (0,0)-(255,191),PSET
30 LINE (0,191)-(255,0),PSET
40 GOTO 40

The COLOR command makes the foreground magenta (Color 7) and. because of the way
you altered the palette above. it makes the background hot pink (Color 6).

In this example, we alter the palette so that the foreground is charcoal brown. rather than
magenta.

24 I A Different Use of Color

The steps are

1. Note which PMODE and color set you are using

The above version of Lines is still using a 4-color PMODE with Color Set 1.

2 In the PMODE and color set you are using, find out which palette slot creates Color 7.

As shown 1n Table 22.2, the palette slot that creates Color 7 is Slot 6.

3 Look up the code for charcoal brown.

4. Store this code in the proper palette slot.

Type

9 PALETTE 6, Color Code

5. Run the program. The background 1s hot pink and the crossing lines are charcoal brown.

DO-IT-YOURSELF 24-2

Change Line 20 so you are 1n Color Set 0

20 SCREEN 1 ,0

Now. figure out how to make the foreground charcoal brown

Learned in Chapter 24

COMMAND

PALETTE

139

25 / FINDING THE RIGHT PAGES

In writing this book, we "stored" chapters in pages. Some chapters require more pages, some
fewer.

In the same sense, BASIC stores low-resolution graphics screens in memory pages. Some
screens require more memory pages; some fewer.

PMODE is what determines how many memory pages it takes to draw a screen. As shown
1n Table 25.1, a screen drawn in a higher PMODE requires more memory pages than a screen
drawn in a lower PMODE.

Table 25.1 / Pages Required for Graphics Screens

Screen

PMODE 4 Screen
PMODE 3 Screen
PMOOE 2 Screen
PMODE 1 Screen
PMOOE O Screen

Pages Required

4 pages
4 pages
2 pages
2 pages
1 page

As you learn shortly, PMODE also determines which pages are stored on a screen.

Changing Pages
(The PMODE Start-Page Parameter)
See what happens if you store the Lines screen on a different group of pages.

5 PMODE1,1
10 PCLS
20 SCREEN1,1
25 LINE (0,0)-(255,191),PSET
30 LINE (0,191)-(255,0),PSET
40 GOTO 40

Focus on PMODE. As you know, the first PMODE parameter tells the computer to start a
PM ODE 1 screen. And, as Table 25-1 tells you, a PM ODE 1 screen requires two pages. The
second parameter tells the computer to start the screen on Page 1. So, the 2-page Lines screen
is on Pages 1 and 2.

141

25 I Finding the Right Pages

142

To put the 2-page Lines screen on Pages 3 and 4, type

5 PMODE1,3

Run the program. You see the same screen, but the screen is now on different pages.

Lines on Different Screens
(Changing the Current Graphics Screen)
What about storing two screens. one on Pages 1 and 2, and the other on Pages 3 and 47

Type this program:

5 PMODE1,1
10 PCLS stores screen on
25 LINE (0,0)-(255,191),PSET Pages 1-2

27 PMODE1,3
28 PCLS stores screen on
30 LINE (0,191)-(255,0),PSET Pages 3-4

40 GOTO 40

The first part of the program starts a PMODE 1 screen on Pages 1-2. It clears this screen
and puts a line on it.

The next part of the program starts another PMODE 1 screen on Pages 3-4. It clears this screen
and puts a line on it.

Run the program and you won't see either screen, because there's no SCREEN statement.
So, add this command:

35 SCREEN1,1

The program now looks like tr11s

5 PMODE1,1
10 PCLS
25 LINE (0,0)-(255,191),PSET

27 PMODE 1 ,3
28 PCLS
30 LINE (0,191)-(255,0),PSET

35 SCREEN1,1

40 GOTO 40

stores screen on
Pages 1-2

stores screen on
Pages 3-4

Run the program. You see only one screen, the current graphics screen, which is the screen
stored on Pages 3-4.

The computer uses your most recent PMODE command to determine the current graphics
screen. In the above program, the most recent PMODE command is Line 27. It specifies the
screen stored on Pages 3-4.

Insert another PMODE line right before SCREEN

32 PMODE1,1

Run the program again. Now you see a different current graphics screen, the screen stored
on Pages 1-2.

25 I Finding the Right Pages

DO-IT-YOURSELF 25-1

Have Color BASIC display a PMODE 2 screen that starts on Page 2. Any guesses
as to what you'll see? Change Line 32 to PMODE 2,2 and run the program. Because
PMODE 2 requires two pages. you see what's on Pages 2-3. And. because this is
PMODE 2, you see this screen in two colors with low-resolution.

Flipping Screens
(An Example of PMODE Start-Page Parameter)
Animators make cartoons by drawing many still pictures and then "flipping" through them.
So, here's the moment you've been waiting tori This program flips screens to show two lines
in motion

5 PMODE1,1

10 PC LS

25 LINE (0,0)-(255,191),PSET

27 PMODE1,3

28 PCLS

30 LINE (0,191)-(255,0),PSET

32 PMODE1,1

34 SCREEN1,1

36 FOR 1=1 TO 200: NEXT l

38 PMODE1,3

40 SCREEN1,1

42 FOR 1=1 TO 200:NEXT

44 GOTO 32

Adding Pages
(The PCLEAR Command)

stores Page 1-2 screen

stores Page 3-4 screen

cJ1splays Page 1 2
screen

displays Page 3 4
screen

You can use a maximum of eight pages of graphics memory, pages 1-8. However, when
you first start up, BASIC gives you only halt that amount, Pages 1-4. For example, make this
change to Lines

5 PMODE1,4

To remedy the problem, insert Line 4, and you now have all eight pages.

4 PC LEAR 8

PCLEAR lets you reserve one to eight pages of memory. If you use PCLEAR, it must be the
first or second command in your program (after CLEAR, it you use CLEAR).

PC LE AR pages reserves pages of graphics memory

pages is the amount of graphics memory to reserve (0-8)

On startup, the computer automatically reserves tour pages. Use PCLEAR to reserve
more or fewer pages.

143

25 I Finding the Right Pages

144

You migt1t wonder why we don't use PCLEAR 8 all the time PCLEAR 8 decreases program
memory Sometimes you need more program memory: other times you need more graphics
memory. PCLEAR gives you the choice

Up and Down, Up and Down
(An Example of PCLEAR)
You can use the pages reserved with PCLEAR to store several screens. If you draw different
pictures on each screen, you can flip through them with PMODE for exciting animation.

10 PCLEAR8

20 FOR P=1 TO 8

30 PMODE 0,P

40 PCLS
50 LINE (128,0)-(138,10+(P-1)*15) ,PSET

60 CIRCLE (128,P*15),15

70 NEXT P

80 FOR P=1 TO 8:GOSUB 110:NEXT P

90 FOR P=7 TO 1 STEP -2:GOSUB 110:NEXT P

100 GOTO 80

110 PMODE 0,P

120 SCREEN1,0

130 FOR T=1 TO 10:NEXT T

140 RETURN

With the exception of CIRCLE (see the next chapter) you know all the features used by this
program

Copying Pages
The PCOPV Command
Using PCOPY (Page Copy) you can copy one page of graphics memory to another. Here
is the format for PCOPY:

Pc o PY page 1 TO page 2 copies page 1 to page 2

25 I Finding the Right Pages

For example, if you want to copy Page 3 to Page 8. type

PCOPY 3 TO 8

One advantage of PCOPY is it can shorten your programs by eliminating repetition.

Keep in mind that PCOPY copies one graphics' memory page. Unless you're in PMODE 0,
this is not one screen. For example, in PM ODE 4, the above statement copies only one-fourth
of a screen.

DO-IT-YOURSELF PROGRAM 25-2

The following program displays four squares that are on four different memory pages
on the screen at the same time. Run it: then shorten the program using PCOPY.

4 PC LEAR 8
5 PMODE3,4
1 0 PCLS
11 SCREEN1,1
1 2 LINE (110,20)-(120,30) ,PSET ,B

20 PMODE3,3
21 SCREEN1,1
22 LINE (110,20)-(120,30),PSET,B

30 PMODE3,2
31 SCREEN1,1
32 LINE (110,20)-(120,30) ,PSET ,B

40 PMODE 3,1
41 SCREEN1,1
42 LINE (110,20)-(120,30),PSET,B
50 GOTO 50

DO-IT-YOURSELF PROGRAM 25-3

Using LINE and start page, simulate a lightning storm. Put "crazy lines" at random
positions on different pages Then, switch back and forth between pages.

Learned in Chapter 25

COMMANDS

PMODE
PCLEAR
PCOPY

145

26 I GOING IN CIRCLES

Does all this talk about SCREEN, PMODE, and PCLEAR have you going in circles? If so,
you haven't seen anything yet!

You can create a full circle, a partial circle, or an ellipse (an oblong circle) with one command,
CIRCLE. Here is its syntax

c IR CLE (x,y),r,c,hw,start,end draws a circle on the current graphics screen

x is the horizontal position of the centerpoint (0 to 255)
y is the vertical position of the centerpoint (0 to 191)
r is the radius in screen points. (If r is larger than 95, the circle flattens against

the edges of the screen.)
c is any available color (0-8). If you omit c, the computer uses the foreground

color.
hw is the heigt1t to width ratio (0 to 255) If you omit hw, the computer uses 1.
start is the starting point (0 to 1). If you omit start, the computer starts at 0
end is the ending point (0 to 1). If you omit end, the computer uses 1.

If start equals end or if you omit both start and end, the computer draws the
complete ellipse.

With CIRCLE, you only need to know the center of the circle and the radius (the distance
from the center to the edge of the circle).

Bring your Lines program back into service.

5 PMODE1,1
10 PCLS
20 SCREEN1,1
25 LINE (0,0)-(255,191),PSET
30 LINE (0,191)-(255,0),PSET

40 GOTO 40

Delete Line 25, and change Line 30 as follows:

30 CIRCLE (128,96),95

Run the program. Your screen shows a scruffy circle. Are you wondering why the circle isn't
truly round? Look at Line 5 and you see that the computer is in PMODE 1. (Only 128 x 96
positions are available).

147

26 I GOING IN CIRCLES

148

Change PMODE1 to PMODE4 (256 x 192) as follows

S PMODE4,1

10 PCLS

20 SCREEN1,1

30 CIRCLE (128,96),95

40 GOTO 40

Run the program. Now, that's a circle 1

DO-IT-YOURSELF PROGRAM 26-1

Using the program above. generate a bull's-eye. You can do this one of two ways

• Add a separate program line for each concentric circle but use a common
center (h, v coordinate).

• Use a FOR .. NEXT loop with a STEP 10.

DO-IT-YOURSELF PROGRAM 26-2

Do you still have the program for the house you built? Use CIRCLE to put a doorknob
on the front door. To add full detail to the circle, run the program in PMODE 4.

Coloring the Circle
(The Color Option)
After you decide the circle's radius. choose its color. Using 2-color PMOOE, you don t r,ave
much choice. It you use 4-color PMODE (PMODE 1 or 3), you have many options

Your program reads

5 PMODE1,1

10 PCLS

20 SCREEN 1, 1

30 CIRCLE (128,96),95

40 GOTO 40

First, make the circle a more manageable size:

30 CIRCLE (128,96),30

For a little variety, change tt1e color to Color 6

30 CIRCLE (128,96),30,6

It's as easy as thati In fact you can make the circle any of the available colors

26 I Going in Circles

Squeezing a Circle
(The Height/Width Option)
Did you ever take a Hula-Hoop, bicycle tire, or buggy wheel and squeeze it with both hands
to form an ellipse?

Similarly, you can change a circle on your screen to an ellipse by specifying a height/width
ratio (hw).

"'"""~w,cn,

When you specify hw, the width of the circle remains the same. The height, however, is
determined by hw

• If hw is 1, the height is the same as the width.

• If hw is greater than 1, the height is greater than the width.

• If hw is less than 1, the height is less than the width.

For example, 1n this program, the hw is 1; so the program draws a round circle.

2 WIDTH 32
5 PMODE4,1
10 PCLS
20 SCREEN 1, 1
30 CIRCLE (128,96),30,,1
40 GOTO 40

In this program, the hw is 3, so the program draws a vertical ellipse:

30 CIRCLE (128,96),30,,3

In this program, the hw is .25, so the program draws a horizontal ellipse

30 CIRCLE (128,96),30,,.25

Note that the above lines do not specify the color (c). We still have to include a comma, to
indicate that we are omitting c. Otherwise, the computer mistakes hw for c.

Change Line 30 in the following ways, and run the program:

30 CIRCLE (128,96),30,,0

30 CIRCLE (128,96),30,,100

When hw equals 0, the ellipse is infinitely wide (a horizontal line). And, when hw equals a
large number, the ellipse is infinitely long (a vertical line).

149

26 I Going in Circles

150

Splitting the Circle
(The Arc Option)
Suppose you want to draw only part of a circle (an arc). To do this, specify the start and end
of the arc, following the chart below. Keep in mind that the computer always draws clockwise .

.75

.50 0

.25

Note: To draw an arc, you must specify hw. For a normal arc, use hw 1.

For example, suppose, you want to draw this arc:

.75

.25

To do so, use this command

30 CIRCLE (128,96),30!,1,1,.25,.75

Now change the command to draw this arc:

75

.25

Is this your new Line 30?

31 CIRCLE (128,96),31,1,1,.75,.25

DO-IT-YOURSELF PROGRAM 26-3

Has night fallen on the house you built? If so, you might want to put a crescent moon
in the corner. This requires two intersecting arcs and some trial and error on your part.

DO-IT-YOURSELF PROGRAM 26-4

Maybe it's cold, as well as dark, around your house. If so, show smoke coming out
the chimney. (Use CIRCLE to generate a spiral that simulates the smoke.)

Learned in Chapter 26

COMMAND

CIRCLE

26 I Going in Circles

151

27 / THE BIG BRUSH-OFF

You might tn1nk we forgot that this is a color computer. So far, it's been a little dab of color
here and a splotch or two of color tnere. You can never create a masterpiece that way 1 Well,
it's time now to paint the screen

The PAINT command lets you "paint" any shape with any available color. Its syntax is

PAINT (x,y),c,b paints the current graphics screen

x Is the horizontal position (0 to 255) of the point at which painting is to begin.
y Is the vertical position (0 to 191).
c Is the color (0 to 8).
b Is the border color at which painting is to stop (0 to 8)

If the computer reaches a border other than that of the specified color, it paints
over that border.

Change the Lines program as follows:

2 WIDTH 32

5 PMODE3,1
10 PCLS
20 SCREEN 1, 1
30 LINE (0,0)-(255,191),PSET
40 LINE (0,191)-(255,0),PSET
50 CIRCLE (128,96),90
60 PAINT (135,125),8,8
70 GOTO 70

153

27 I The Big Brush-Off

154

Can you predict the results? Lines 30 and 40 draw intersecting lines. Line 50 draws a circle,
and the circle's center is where the two lines intersect. That part is easy, but what about PAINT
in Line 60?

II you guess that the computer goes to Position (135,125) and paints the screen Color 8 until
it reaches a border that is Color 8, you're right!

Delete Line 30, and run the program. Now that you redefined the borders, the computer paints
halt the circle.

DO-IT-YOURSELF PROGRAM 27-1

Can you paint the entire circle? You can do this two ways. One involves adding a
line; the other involves deleting a line.

DO-IT-YOURSELF PROGRAM 27-2

Do you still have your house? It probably looks fairly plain Why not spruce it up
with some paint?

DOIT-YOURSELF PROGRAM 27-3

Add a garage to your house, then use PAINT to raise and lower the garage door.
Since the painting action always goes up first, this takes a little refining on your part.
Add a delay before and after the opening. With CIRCLE, add the sun.

Learned in Chapter 27

BASIC WORDS

PAINT

28 I DRAWING SHAPES

You already know how to create lines, ellipses, and boxes. How about learning a shortcut?

The shortcut is the DRAW command. DRAW lets you draw any shape by specifying direction,
angle, and color-all in the same command!

Here Is the syntax of DRAW:

DR AW shape draws a shape on the current graphics screen

shape is a string that can include the following motion subcommands, modes,
and options

Motion Subcommands
BMx,y = Move to Position x,y
Un = Up n points
On = Down n points
Ln = Left n points
Rn = Right n points
En = 45-degree angle n points
Fn = 135-degree angle n points
Gn = 225-degree angle n points
Hn = 315-degree angle n points
X = Execute a substring and return

Modes
Sn Scale n (1-62)
Cn Color n (0-8)
An = Angle n (0-3)

Options
N = No update of draw position
B Blank (no draw, just move)

Note: If you omit the start point, the computer uses the last DRAW position or, if
you haven't previously used DRAW, at the center of the screen. If you omit the number
of points it should draw, the computer draws 1 point.

155

28 I Drawing Shapes

156

Drawing a Shape
(The U, D, L, and R Motion Subcommands)
With DRAW, all you havB to specify is where to start drawing. which direction to draw, and
how tar to do so.

Change the Lines program so it looks like this

2 WIDTH 32
5 PMODE 3,1
10 PCLS
20 SCREEN1,1
25 DRAW "BM128,96;U25;R25;D25;L25"
40 GOTO 40

Presto' Can you guess why the square's lower left corner Is at (128,96)?

Line 25 tells the computer to start drawing at (128 96) draw up (U) 25 points, right (R) 25.
down (D) 25, and finally, left (L) 25

Stand the square on one of its corners. To do so. substitute E. F, G, and H for U, R, L, and
D In Line 25

25 DRAW "BM128,96;E25;F25;G25;H25"

The first line angles off at 45 degrees: the next. at 135 degrees; the next, at 225 degrees;
and the last, at 315 degrees.

There is one slight hitch in drawing angles. If you are in PMODE O or 1 and draw an angle
that has an odd-number length and at least one odd-number coordinate (x,y), Lines F and
H have a slight hitch at the midpoint. If both coordinates are even-numbered, Lines E and
G have the hitch. This is normal.

DO-IT-YOURSELF PROGRAM 28-1

You already know your computer is the star of the show. Now. prove it by drawing
a star.

Starting at a Relative Position
(The "+" and " - " Signs)
In the above examples, you told the computer to start at an absolute position. You can also
tell the computer to start drawing at a relative posd1on.

For example, bring out this version of Lines

2 WIDTH 32
5 PMODE 3,1
10 PCLS
20 SCREEN 1, 1
25 DRAW "BM128,96;U25;R25;D25; L25"
40 GOTO 40

28 I Drawing Shapes

If you wish to create a second square at a position relative to the first square, you could add
this line

30 DRAW "BM+15,+15;U25;R25;D25;L25"

The + is an offset sign. When the computer executes Line 30, the current draw position is
(128.96). which is the last draw position in Line 25. So. to draw the new square, the computer
starts at (128+15,96+15) or (143,111).

Another offset sign you can use is -. Change Line 30 as follows

30 DRAW "BM+15,-15;U25;R25;D25; L25"

Run the program The start point of the new square is (128 + 15,96-15) or (143,81).

Try this line

30 DRAW "BM+15,15;U25;R25;D25;L25"

If you use an offset sign for the x coordinate, but omit the offset sign for the y coordinate,
the computer uses a + offset sign for the y coordinate.

DO-IT-YOURSELF PROGRAM 28-2

After all this heated activity, you're probably ready to cool off. So why don't you use
DRAW to create an ice cube?

You can generate the entire cube using DRAW. or you can incorporate a couple
of LINE commands within the program. Try to use both absolute and relative motion.

Reducing and Enlarging a Shape
(The Scale Mode)
What if the figures you draw turn out to be too big or too small?

The solution's easy. Use the DRAW command's scale mode

s n lets you scale a display

n is a number in the range 1-62 that indicates the scale factor in units of 1 /4
as shown here:

1 1 /4 scale
2 2/4 scale
3 3/4 scale
4 4/4 (full) scale
5 5/4 (125%) scale
8 8/4 (double) scale
12 = 12/4 (triple) scale
etc.

If you omit n, the computer uses 4 (4/4 = 1).

After you enter Sn, the computer scales all motion subcommands accordingly.

Make your refined Lines draw a single square again. Do this by deleting Line 30 and changing
Line 25 as follows:

25 DRAW "S2;BM128,96;U25;R25;D25; L25"

157

28 I Drawing Shapes

158

Run the program. The square In the lower left corner Is half the size you specified.

To see how small or large a square can be. run the following program

5 PMODE4,1
10 PCLS
20 SCREEN 1, 1
25 FOR SCALE= 1 TO 62
30 S$ = "S" + STR$(SCALE) + ";"

35 DRAWS$+ "BM10,100U20R20D20L20"
40 NEXT SCALE
50 GOTO 50

Don't make the mistake of thinking that the smallest square is the one specified in Line 35.
The one we specified Is the fourth one from the edge.

When you use the scale-down option the computer rounds the resulting line length to the
nearest whole number, it it is not already a whole number.

For example, · S2U25R25O25L25" results In a 12 1 /2 x 12 1 /2 square. The computer draws
a 13 x 13 square.

Coloring a Shape
(The Color Option)
DRAW's C option lets you specify the color of what you are drawing.

First, list the Lines program:

5 PMODE3,1
10 PCLS
20 SCREEN1,1
30 DRAW "S2;BM128,96;U25;R25;D25;L25"
40 GOTO 40

Go back to full scale either by changing S2 to S4 or by deleting S2. Then, right inside the
first set of quotation marks in Line 30. insert

C6;

28 I Drawing Shapes

Run the prograrr The square is now Color 6.

Replace tne C6 (1n program Line 30) with CS. and run the program The square is now Color 8.

You can insert Cn anywhere in the DRAW command. All actions that 'ol/ow are the color you
specify. For instance. change Line 30 to read

30 DRAW "C8; BM128,96;U25;R25;C6; D25;L25"

Run the program. The program displays a 2-color square. The first two lines drawn are Color
8. The second two are Color 6

Drawing Angles
(The Angle Mode)
The A mode lets you specify the angle at which a line 1s to be drawn. After you include A
1n the DRAW command. the computer draws all subsequent lines with the angle disp.acement
specified by An until you specify otherwise.

Here is the syntax of the A subcommand

An lets you specify the angle of a line

n ,s the angle code (0 to 3) All angles are measured clockwise.

O O degrees
1 90 degrees
2 180 degrees
3 270 degrees

If you omit An, the computer uses AO.

For example, your program now reads

5 PMODE 3,1
10 PCLS

20 SCREEN 1, 1
30 DRAW "C6;BM128,96;U25;R25;D25;L25"
40 GOTO 40

Change Line 30

30 DRAW "A0;BM128,96;U25"

Rlln the program. Your screen diso1ays a vertical line tf1at is 25 points long. Now change Line 30

30 DRAW"A1;BM128,96;U25"

Run tne program The line is now horizontal.

159

28 I Drawing Shapes

160

Drawing a Blank
(The Blank Option)
II you want the next line you draw to be a "blank" or an invisible line, include the B option.

For example, let's say you are drawing letters of the alphabet and are ready tor the letter
C, which is nothing but a square with the right side blank. Change Line 30 as follows so the
program generates such a figure:

30 DRAW "BM128,96;U25;R25 ;B ;D25;L25"

Run the program. Remember, only the line immediately following the B is blank.

DO-IT-YOURSELF PROGRAM 28-3

Print your name on the screen using DRAW. This means you have to stay in the
graphics screen. Sure, it would be easier to write your name on the text screen, but
you can't have "true" text and graphics at the same time.

Drawing from the Same Point
(The No Update Option)
Another of DRAW's many features is N, the no update option. N tells the computer to return
to its original (current) position after it draws the next line. To see this, change Line 30 to read:

30 DRAW "M128,96; N; U25; N; R25; N; 025; N; L25;"

Run the program. The computer draws a 25-point line straight up from 128,96. It then returns
to 128,96, draws the next line, returns, draws the next, and so on. As a result, tour lines radiate
from the center of the screen, each in a different direction (up, right, down, and left).

DO-IT-YOURSELF PROGRAM 28-4

Using DRAW's N option (and CIRCLE), draw a pie that has eight pieces. Once you've
done that, cut out a piece of the pie and put it over to one side.

Using Substrings
(The X Subcommand)
The string following DRAW can be either a constant, as in the previous examples, or a variable.

For example, add Line 25 and change Line 30 as follows

25 A$="BM128,96;C8;U25;R25;D25;L25"
30 DRAW A$

Run the program. Following the instructions stored in A$, the computer draws the 25 x 25
square, starting at 128,96.

28 I Drawing Shapes

The X subcommand lets you execute one DRAW string within another DRAW string. To do
this, leave Line 25 as it is so it defines A$. Then, change Line 30. The two lines read:

25 A$="BM128,96;C8;U25;R25;D25;L25"
30 DRAW "BM95,5O;U25;R25; XA$; D25;L25"

Run the program. The computer starts drawing at 95,50 a line that extends up (U25) and
then right (R25). It then executes A$ so that it draws a 25 x 25 square starting at (128,96).
After executing A$, it returns to the original (current) string and completes its execution
(D25,L25).

DO-IT-YOURSELF PROGRAM 28-5

Do-It-Yourself Program 28-3 shows that you can simulate text (letters) on the graphics
screen by drawing the letters. Use DRAW to create all 26 letters of the alphabet.
Store the DRAW subcommands in strings. Then use the X subcommand to arrange
the letters into words.

DO-IT-YOURSELF PROGRAM 28-6

Do your still have your house? If so, load the program again and use DRAW to make
the front door open and close.

Learned in Chapter 28

COMMAND

DRAW

161

29 / THE DISPLAY
WENT THAT ARRAY

In previous chapters, you learned a few ways to move figures from one screen to another,
but none is very efficient. There is a better array (groan). It has to do with GET and PUT.

How It Works
(The GET and PUT Commands)
Using the GET and PUT commands, you can "get" a rectangular area from the screen, store
its contents in an array (an area of memory), and then 'put" it back anywhere you want on
the screen. This is a good method for simulating motion

<

r
The syntaxes for GET and PUT are

GET (x 1.y 1)-(x2,y2),array, G gets a rectangle from the current graphics screen
and stores it in an array

x1.y1 is the rectangle's upper-left corner.
x2,y2 is the rectangle's lower-right corner
array is an area in memory that stores the rectangle.
G stores the array in full graphic detail. It is required when using high resolution

(PMODE 4 or PMODE 3 with colors) or when using the PUT action
parameters.

PUT (x1,y1)-(x2,y2),array,action puts a rectangle stored in an array, on the current
graphics screen

xi .y1 1s the rectangle's upper-left corner.
x2 y2 is the rectangle's lower-right corner
array is an area in memory where the rectangle is stored.
actlan (shown on Table 29-1) tells the computer what to do with the points stored
in the rectangle.

Note: Be sure the computer is in the same PMODE for GET as it is for PUT.
Otherwise, you might not "put" what you 'got

163

29 I The Display Went That Array

164

Type and run this program to see how GET and PUT work

5 PC LEAR 4
10 PMODE 3,1
1 5 PCLS
20 SCREEN1,1
25 DIM V(20,20)
30 CIRCLE (20,20),10
35 GET (10,10)-(30,30),V
40 PCLS
42 FOR DLAY = 1 TO 300: NEXT OLAY
45 PUT (110,110)-(130,130),V
50 FOR DLAY = 1 TO 300: NEXT DLAY
60 GOTO 60

The program draws a circle on one part of the screen and then moves it to another. To do
this, the computer

1. Creates an array named Vin memory (Line 25) Array V Is big enough to store a 20 x
20 rectangle.

2. Draws a circle on the screen (Line 30)

3. Gets a 20 x 20 rectangle containing the circle and stores 1! In the Array V (Line 35).

4. Clears the screen (Line 40).

5. Puts the 20 x 20 rectangle (stored in Array V) back on the screen.

Storing the Rectangle
(The DIM Command)
Because GET and PUT use an array to store the rectangle. you need to reserve memory for
this array before you use GET or PUT. The DIM command lets you do so.

DIM array(!ength, width) creates an array for storing a rectangle the size of
length x width points

Note: DIM needs to be one of the first lines In your program (after CLEAR
and PCLEAR, if you use them)

How large does the array need to be? This depends on how large a rectangle you want to
"get" or "put":

Width = x2 - x1
Length = y2 - y1

For example, this program's GET command uses (10.10) and (30.30) to specify a rectangle.
So, the rectangle is 20 x 20. It has a width and length of 20. The PUT command uses the
same size rectangle: 20 x 20. Some rectangles might be too large to store in an array Each
point consumes five bytes when stored 1n an array

29 I The Display Went That Array

Another Kind of Action
(The PSET, PRESET, AND, OR, and NOT Options)
So far, you've used only one action with PUT, the PSET action. When you don't specify an
action, the computer uses PSET.

To see how the other actions work, start by running this program. It puts 15 rectangles on
the screen using the PSET action.

5 PC LEAR 4
10 DIM V (30,30)
15 PMODE 2,1
20 PCLS
25 SCREEN 1, 1
30 CIRCLE (128,96),30
35 PAINT (128,95),2,4
40 PAINT (128,97),3,4
45 GET (98,81)-(128,111),V,G
50 PCLS
55 FOR I= 150 TO 1 STEP -10
60 PUT (I,81-I/5)-(I+60,111-I/5),V,PSET
65 NEXT I
70 GOTO 70

PSET sets and resets each point as it is in the array rectangle. Each rectangle it puts on the
screen is the same as the one stored in the array.

Now, change Line 60 in various ways to try other actions. First, try PRESET.

60 PUT (I/81-I/5)-(!+60,111-I/5),V,PRESET

PRE s ET sets and resets the reverse of each point in the array rectangle. Each rectangle it
puts on the screen is the reverse of the one stored in the array.

Try the OR action:

60 PUT CI,81-I/5)-(1+60,111-I/5),V,OR

o R sets each point that's either set in the array rectangle or already set in the position where
it's putting the screen rectangle. Each rectangle it puts on the screen has all points set that
are stored in the array plus what is currently on the screen.

For a strange effect, try the NOT action

60 PUT (I,81-I/5)-(1+60,111-I/5),V,NOT

NOT sets and resets the reverse of what's on the screen. (NOT doesn't care what's stored
in the array.) Each rectangle it puts on the screen is the reverse of the previous one.

Try the AND option with the program, and you won't see anything:

60 PUT (I,81-I/5)-(!+60,111-I/5),V,AND

AND sets each point that is set in the array and is already set on the screen in the position
where it's putting the rectangle. Any points that don't meet both of those conditions are reset.
In this case, each rectangle AND puts on the screen has all points reset. You see nothing.

165

29 I The Display Went That Array

166

Table 29.1 Put Actions

This is a summary of each action:

Option

PSET

PRESET

ANO

OR

NOT

Function

Sets each point that is set in the array.

Resets each point that is set in the array; sets each point that is reset in the array.

Compares each point in the array rectangle with the screen rectangle. If either
or both are reset, the computer resets the screen point.

Compares each point in the array rectangle to the screen rectangle. If either
is set, the computer sets the screen point.

Reverses the state of each point in the screen rectangle regardless of the array
rectangle's contents.

DO-IT-YOURSELF PROGRAM 29-1

Use GET and PUT to send a spaceship up the screen. You might want to add a
few asteroids and aliens to make the voyage more exciting!

Learned in Chapter 29

COMMANDS

GET
PUT
DIM

PART 4 / THE BIG PICTURE

In Chc1pter 17. yuu used the low resolution text scrc(:n to nraw simple dot to dot pictures In
f\:ut 2. yrn1 usen the low-resolution gr;iphics screen to draw lines. circles. and cubes.

In this part ol tiw book. you use tile must powerful screer1 for uraphics. tho high-resolutior1
graphics screer1. to draw nxtremely detailed, colorful ancJ last pictures.

Here s the Big Picture:

Maximum Maximum Maximum
Positions Colors Memory

Low-Resolution 64x32 9 None
Text Screen

Low-Resolution 256x192 4 Inside BASIC
Graphics Screen

High-Resolution 640x192 16 Outside BASIC
Graphics Screen

167

Introducing .. . Coco 3!
Sample program no. 22

Intro highlights some of the new
features of Color BASIC version 2. e

THE REAL THING

NEW rE T RES
r o p~ter 3 o fers .

TE T

EW HIG - PE30L_TI) GR
192 ,tr 4 cJlors
lS2H 1t h lE co . ors

ws 16 colors \ 1.r, 64 to
C OS@ rJ II

- Program s c a n pr1nt te ton
e graphics screen

Computer Art
Sample program no. 29

Random lines, ci rcles, and boxes
create colorful computer art. Try
our program, then change it.

The Artists Palette
Sample program no. 24

Palette shows you a mixture of
sixteen colors randoml y selected
from the sixty-four available colors .

The Coco Rainbow
Sample program no. 23

Hcolors lets you see all sixty-four
colors , eight at a time.

oeoooeec)e• c~o•
oooe• o• • cJ•8• --•••o••o•o•

Color Doodle
Sample program no. 30

Color Doodle lets you draw your
own computer art on the screen.
Look at the program, and add your
own special function keys.

Going Everywhere
at Once
Sample program no. 5

In-Out draws moving patterns of
lines in exciting colors. Change the
colors for more variety.

String Art
Sample program no. 28

Moving lines draw colorfu l string
art. The program uses random
starting points for a line, and twists
them until they bounce off the
screen edges.

Pick a Lucky Clover
Sample program no. 17

Grow your own 8-Leaf Clover.
Transplant it to other parts of the
screen.

A Sine of the Times
Sample program no. 9

Weave a wave across your screen
with a loop and some tricky
trigonometry.

This Fan is a Breeze
Sample program no. 19

Cool off in front of your own
computerized tan. Change the
colors tor different effects.

This is your BASIC
tunnel . ..

See do it yourself program no. 24-1

Dig an electronic tunnel. Look at
how do it yourself program no.
24-1 draws chimney smoke. Delete
lines 25-90 and design your own
tunnel. Hint: Try a larger radius.
Experiment with the program to
change the depth and width of the
tunnel .

I CAD, Can You?
Sample program no. 7

Projection Studies gives you a
first encounter with Computer
Aided Design (CAD).

Looping Loops
Sample program no. 27

Watch circles change in color and
grow. The sizes change at random.

PRESS BREAK

PRESS BREAK

KEY TO STOP

KEV TO STOP

Colorful Boxes
Sample program no. 25

Colorbox draws a screen full of
boxes, then changes the colors.

Build Your Own House
Do it yourself program no. 26-4

Build a house, complete with
smoking chimney. Build your own
additions.

An Electronic Blanket
Sample program no. 13

Weave a Navaho Blanket to keep
yourself warm . Experiment with
different sizes and colors .

30 I THOUSANDS OF DOTS

The high-resolution graphics screen works in much the same way as the low-resolution graphics
screen. The only difference between the two screens is that the high-resolution screen, while
offering more features, is actually easier to use.

Creating a Graphics Screen
(The HSCREEN Command)
High-resolution graphics lets you create a graphics screen using only one command, the
HSCREEN command. HSCREEN does the same tasks that three low-resolution commands do.

• It sets the features to be used on the graphics screen (as does the PMODE command).

• It rlisplays the graphics screen (as does the SCREEN command).

• It clears the graphics screen (as does the PCLS command).

Tho '.;ynta,; of HSCflE[N is:

H s CREE N n sets the features tor displays. arid clear'.; the r,rnrent hiql1-
resolut1on graphics screen.

n sr0,cities which features you want to use (Q-,J).

To see l1ow HSCHEEN works. type this progrnm

10 HSCREEN

2¢ GOTO 20

When you run the progrmn, yrnJ see a blank high rcsol11t1on graphics screen. Press :BREAK)

lo return to the text screen.

HSCREEN, like PMODE, lets you choose from different settings that specify which features
you want to use. The features you can use arc·

• Grid positions-You can use a maximum ot 640 x 192 positions at a time.

• Colors-You can use a maximum of 16 colors at a time.

The available settings are listed on Table 30-1.

HSCREEN 1

HSCREEN 2
HSCREEN 3
HSCREEN 4

Table 30.1 / HSCREEN Settings

Grid Positions

320 X 192
320 X 192
640 X 192
640 X 192

Colors

4
16
2
4

The HSCREEN 1 setting that we used above specifies a 320 x 192 grid with a maximum of
four colors.

In addition to these four settings, you can use a fifth setting·

HSCREEN 0

169

30 I Thousands of Dots

170

This setting returns you to the low-resolution graphics mode. Once you have entered the high­
resolution mode, by executing an HSCREEN 1 (or 2, 3, or 4) command, you cannot display
a low-resolution graphics screen without first executing an HSCREEN O command.

Note that, unlike PMODE, HSCREEN does not use different pages of graphics memory All
high-resolution screens are stored in the same area of memory

Producing Graphics on the Screen
(The High-resolution Graphics Commands)

High-resolution graphics has a counterpart to almost all the low-resolution commands. The
high-resolution commands, and their low-resolution counterparts, are listed in Table 30.2.

Table 30.2 / High- and Low-resolutlon Graphics Commands

High-Resolution

HCIRCLE
HCLS
HCOLOR
HDRAW
HLINE
HPAINT
HRESET
HSET
HPOINT

Low-Resolution

CIRCLE
PCLS
COLOR
DRAW
LINE
PAINT
PRESET
PSET
PPOINT

For example, the high-resolution HCIRCLE command corresponds to the low-resolution CIRCLE
command. Both work in almost the same way. (The few differences are discussed below.)

30 I Thousands of Dots

Because high- and low-resolution commands are so similar, it is easy to convert a program
from one mode to another.

Look at the first program in Chapter 26, which draws a circle on the low-resolution screen.

5 PMODE4,1
10 PCLS
20 SCREEN1,1
30 CIRCLE (128,96), 95
40 GOTO 40

To convert this program to draw a circle on the high-resolution screen, type:

10 HSCREEN 2
30 HCIRCLE (160,96), 95
40 GOTO 40

A Different Use of Grids
(High- v Low-resolution Commands)
Unlike the low-resolution commands, the high-resolution commands use exact, rather than
scaled, grid positions. This means that if you change to a different high-resolution grid, you
need to change the dot positions in the high-resolution program

For example, the Circle program is currently using a 640 x 192 grid.

10 HSCREEN4
30 HCIRCLE (160,96), 95
40 GOTO 40

Change the HSCREEN setting so that it uses a 320 x 192 grid

10 HSCREEN 1

Now, run the program. Because you changed to a 320 x 192 grid, the circle appears at a
different place on the screen. To make it appear at the same place, change the dot positions
in the HCIRCLE command:

30 HCIRCLE (80,96), 95

A Different Use of Color
(High- v Low-resolution Commands)
High-resolution graphics commands use the palette in a different way than their low-resolution
counterparts.

For example, add a line to the "Circle" program so that the computer paints the circle Color 1.

35 HPAINT (160,96),1,1

Now, run the program. In the low-resolution mode, the circle would have been painted one
of several different colors, depending on which color mode (2-color or 4-color) and color set
(Color Set 1 or 2) you were using.

171

30 I Thousands of Dots

172

In the high-resolution mode, Color 1 always specifies the same color the color stored in Palette
Slot 1.

To paint the circle a nonstandard color, such as color code 23, store the color code in Palette
Slot 1 Type this line and run the program.

3 PALETTE 1, 23

Table 7 9 in "Odds and Ends" shows how the high-resolution graphics commands use the
palette in each HSCREEN color mode

A Better Way of Printing
(The HPRINT Command)
One ma1or drawback of using a low-resolution graphics screen 1s tl1at you cannot easily print
a message on it. Sure, you can use the DRAW command to make each letter, but this is tedious
and requires a lot of memory.

In the high-resolution mode, the HPRINT command prints a message directly on the high­
resolution graphics screen. Its syntax is

HP RI N T(x,y), message Prints message at Text Position x,y on the high-resolution
graphics screen

HPRINT requires that you give text positions, rather than graphics positions. A 320 x 192
graphics screen corresponds to a 40 x 24 text screen. A 640 x 192 graphics screen corresponds
to an 80 x 24 text screen.

So, in HSCREEN 1 or HSCREEN 2, 40 columns are available. In HSCREEN 3 or HSCREEN
4, 80 columns are available. If the message is longer than the number of columns available.
the last part of the message is clipped.

These are examples of HSCREEN commands

HPRINT(0,20), "The Score is", SC

HPRINT(0,0), "Your name is"; AS
HPRINT (10,10), A$+8$

Learned in Chapter 30
COMMANDS

HSCREEN
HCIRCLE, HCLS,
HCOLOR, HDRAW
HLINE, HPAINT,
HRESET, HSET,
HPOINT
PALETTE
HPRINT

FUNCTION

HPOINT

31 / GRAPHICS STORAGE

GET and PUT are useful commands In the low-resolution mode. These commands let you
"get" a rectangle, store it in an array, and "put" it somewhere else on the screen.

The problem is that an array consumes valuable memory space and, by doing so. takes away
memory space that the BASIC program could be using

The high-resolution counterparts of GET and PUT do not use an array to store the rectangle.
In fact, they do not use any storage w1th1n the BASIC area. Instead, they use special GET/PUT
buffers, which are areas of memory outside BASIC.

Reserving a Buffer
(The HBUFF Command)
Before you can use a GI:: f/PUT buffer, you need to tell BASIC know you plan to use it You
can do this using a special high-resolution command called HBUFF.

The syntax of HBUFF is:

H Bu FF buffer, size Reserves a GET/PUT buffer.

buffer is a number that labels the GET/PUT buffer.
size is the size of the GET/PUT buffer, where size=(number of bytes-1).

To use HBUFF, HASIC needs to know how much buffer memory to set aside to store the
rectangle. The unit ot measure for memory is called a byte. Depending on the HSCREEN
mode you are using, each byte can store 2, 4, or 8 dots frorn the screen. Table 31 1 shows
how many dots RASIC stores in a byte, depending on the HSCREEN mode you are using.

173

31 I Graphics Storage

174

Table 31.1 / Memory Required for Graphics

Screen mode

HSCREEN 1
HSCREEN 2
HSCREEN 3
HSCREEN 4

Dots per Byte

4
2
8
4

As an example, suppose you want to do an HGET of the rectangle (10,5)-(30, 15) in HSCREEN
1. BASIC rounds the X coordinates down to the nearest byte, according to the graphics screen
mode you are using. BASIC reads the first X value of iO. and divides it by the number of
dots per byte for HSCREEN 1 (See table 31 1).

10/4=2.5

Because BASIC rounds down for HGET/HPUT X coordinates. ignore the fraction to the right
ot the decimal point. This gives you an answer ot 2. Multiply this number by the number of
dots per byte for HSCREEN 1. The result Is the first X coordinate that BASIC will use for the
HGET

2 ' 4 = 8

You have now solved almost half of the mystery. The 0H1er X coordinate is solved the same way.

30 I 4 = 7.5 (Ignore the fraclion)

7 ' 4 = 28

So, in HSCREEN 1, if you tell BASIC to HGET(10,5)-(30, 15) it will actually HGET(8,5)-(28, 15).
Now, solve the last part of the mystery. What size does HBUFF need to be to store
HGET(B,5)-(28, 15) in HSCREEN 1? Here Is how to figure it out.

Subtract the smaller X coordinate value (8) from the larger X coordinate value (28).

28 - 8 = 20

Add 1 to the result.

20 + 1 = 21

Divide the new result (21) by the number of dots per byte for HSCREEN 1 (4).

21 / 4 = 5.25

If there Is a fraction in the answer, round the answer up to the next higher whole number.
Because you got an answer of 5.25, and not 5. round the answer up to 6. This is the number
of bytes required to store each row, or tr1e width of the HGET rectangle in bytes. Now, subtract
the smaller Y coordinate value (5) from the larger Y coordinate value (15).

15·5=10

Add 1 to the result.

10 + 1 = 11

This answer is the height of the HGET rectangle in dots. To find out the total number of bytes
required to store the rectangle, multiply the width in bytes (6), by the height in dots (11).

6 * 11 = 66

31 I Graphics Storage

Because size equals the number of bytes minus 1. subtract 1 from this value.

66 - 1 = 65

Therefore. an HGET(10,5)-(30, 15) in HSCREEN 1 requires an HBUFF with a size value of 65.
To see what HBUFF looks like in a program line. examine the line below. This line assigns
HBUFF buffer number 1 a size of 65. Remember that size is 1 less than the number of bytes
the butter can store. In this example, the HBUFF can store 66 bytes.

10 HBUFF 1,65

Getting a Rectangle into the Buffer
(The HGET Command)
To get a rectangle and put It into the butter, you use the HGET command. HGET Is the
counterpart to GET. Its syntax Is:

HG ET (x 1,y 1)-(x2,y2),buffer Gets a rectangle from the high-resolution graphics
screen and stores it in buffer.

The following program draws a small box near the top lett corner of the screen and gets it
into butter 1

10 HBUFF1,43
20 HSCREEN 4
30 HLINE(10,0)-(20,10),PSET,B

40 HGET(10,0)-(20,10),1

50 GOTO 50

Putting the Rectangle on the Screen
(The HPUT Command)
To put the rectangle on the screen, you use the HPUT command. which corresponds to PUT.
Its syntax Is

HP u T (x1.y1)-(x2,y2},buffer,action Puts a rectangle from buffer on the high­
resolution graphics screen using the specified action The action can be PSET,
PRESET, AND, OR, and NOT.

This line puts the box elsewhere on the same screen

45 HPUT(26,20)-(36,30) ,1,PSET

Remember that the color codes that are put on the screen refer to palette slots. Try using
AND and OR. You might get some surprising and colorful results.

175

31 I Graphics Storage

Learned in Chapter 31

176

BASIC Words

HBUFr
HGF: T and HPUT

Concepts

Reserving a buffer
Usir1g the buffer for movinq or
duplicating a rectangle

PART 5 /
GETTING DOWN TO BUSINESS

In this part of the book. we get dow,n to bus,ness and deal with data-for example. checkbook
receipts, tax records, address. and books You· 11 learn to organize this data by writing programs
that file, update, print and analyze

177

32 / STORING DATA

Storing a BASIC program on tape is easy. You simply use the CSA VE command. Storing data
on tape takes a little more effort. You need a program.

This chapter shows how to write two programs for storing data on tape. fhe first program
stores data on tape The second retrieves data frorn tape.

A Program to Output Data
(The OPEN, PRINT #, and CLOSE Commands)
Assume you want to store these checks on tape:

------------CHECKS

PUBLIC HOSPITAL
PAUL'S GROCEFW
CHARITY FUND
DANDY OFFICE SUPPLY

Start with a short, simple program that stores the first check, "PUBLIC HOSPITAL," to tape.
Type:

10 OPEN "0", #-1, "CHECKS"
20 PRINT #-1, "PUBLIC HOSPITAL"
30 CLOSE #-1

Prepare the tape recorder tor recording:

1. Connect your tape recorder.

2. Insert a tape 1n your tape recorder, and rewind the tape.

3. Press your recorder's PLAY and RECORD buttons until they lock.

179

32 I Storing Data

180

Run the program. The tape recorder turns on while the computer does several tasks.

• It opens commun1catI0:1 with the tape recorder.

• It prepares to store data

• It labels the area of the tape where it will store data as a file named "CHECKS

This all happens In Line 10. Note tr10 meaning of the #-1, "O", and "CHECKS":

• #-1 specific'., the tape recorder.

• 'O" stands tor output.

• CHECKS" specifies a filenarnc,

The next line, Line 20. sends · PUBLIC HOSPITAL" to the tape recorder.

The last line, Line 30, closes communication with the tape recorder.

The program we wrote, which we call an output program. uses three new commands rr1e1r
syntaxes are:

OPEN mode, device. file Opens communication with device so you can
transmit information to file using the specified mode of data transmission.

mode can be "I" (Input) or "O" (Output) device can be #0 (screen or keyboard).
#-1 (cassette). or # 2 (printer).

PRINT #device, mes:::uuc i'ririts a message to dev1r:e

c LOSE #dev1Ce Closes communication with deV1C:e.

A Program to Retrieve Data
(The INPUT # Command)
To load data back into memory, you need an input program. Erase the output program you
now have in memory, and type·

100 OPEN "I", #-1, "CHECKS"
110 INPUT#-1,A$
12(1) PRINTA$
130 CLOSE #-1

Prepare the recorder tor loading data:

Rewind the tape.

2. Press the PLAY button.

3. Then, run the program.

Line 100 opens communIcatIon with the tape recorder, this time to retrieve ("I") data from
a file named "CHECKS' .

Line 110 inputs a data item from· ·CHECKS'' and labels this item as A$. Line 120 displays A$.

Line 120 closes communication with the tape recorder.

32 I Storing Data

The input program uses another new command. Its syntax is

r NP u T #device Retrieves information from device until one of the following
characters is encountered: a comma (,). a semicolon (;). or a carriage return
('ENTER}

Finding the End of the File
(The EOF Function)
Suppose you don't know how many data items are stored in "CHECKS'"_ You want to retrieve
all the data items until you reach the end of the file.

You can do this by adding these lines to the input program you now have 1n memory:

105 IF EOF(-1) = -1 THEN 130
125 GOT0105

Line 105 checks to see it you reached the end of the tile.

• II you l1ave, EOF(1) equals -1. The cornp1Jtcr ooes to Line 30 arid closes
comm1in1cat1on witl1 the file.

• If you have not. f-OF(-1) does not cquc1I 1 Ille cornµuter retri(ivcs the next data
itern 1n thP- tile

To see if you hav0, rec1ched the end ol the tile, you useJ a r1ew function. Its syntax is:

E o F (device) Heturns a number ind1cilt1ng whether you ve reachP.d the end of the
tile rn1 ciev1ce. The numhc:r returned is -1 (end of file) m O (not tt,e er1d of file).

Storing More Data
So far. · CHfCKS" has been easy to handle, but not very usdul Suppose you want to store
all tilis information in "CHECKS"

CHECKS

PAYABLE TO AMOUNT EXPENSE

PUBLIC HOSPITAL 45.78 MEDICAL
PAULS GROCERY 22.50 FOOD
CHARITY FUND 20.00 CONTRIBUTION
SALES OFFICE 13.67 BUSINESS

Here is an output program that lets you store all the above information, not only for the four
checks listed above, but for as many checks as you want

5 CL S
1 0 OPEN "0", #-1, "CHECKS"
20 INPUT "CHECK PAYABLE TO . " . A$,
30 IF A$='"' THEN 80
40 INPUT "AMOUNT : $ 11 ; B
50 INPUT "EXPENSE : "; C$
60 PRINT#-1, A$,B,C$
70 GOTO 20
80 CLOSE#-1

181

32 I Storing Data

182

Here is a complementary input program that retrieves all the checks you stored until it reaches
the end of the file:

100 OPEN "I", #-1, "CHECKS"
110 IFEOF(-1)=-1THEN150

120 INPUT#-1,A$,B,C$
150 PRINT A$; B; C$

160 GOTO 110
170 CLOSE#-1

Learned in Chapter 32

COMMANDS

OPEN
CLOSE
PRINT#
INPUT#

FUNCTION

EOF

33 / NUMERIC ARRA VS

In this chapter, we show how to organize large groups of numbers using a new kind of variable
and a new way of organizing variables.

A New Kind of Variables
(Subscripted Variables)
Assume you want to store all the votes tor Districts 1-14 ir1to variables

ELECTION RETURNS

District Votes for Candidate

1 1-13
2 215
3 125
4 331
5 442
6 324
7 213
8 115
9 318
10 31-1
11 223
12 1C::'l ~)i"_

13 314
14 92

One way is to store them in the same kind of variables you've been using all along, simple
vanables. For example, store the votes for the first three districts into simple variables by typing:

A :: 1 43 ENTER1

B :: 21 5 I ENTER]

C :: 1 2 5 I EN1ERJ

183

33 I Numeric Arrays

184

A better way is to usu subscnpted variables. T ypc·

A (1) ::: 143 CENTER'I

A (2) = 21 5 (ENTER

A (3) = 1 2 5 (ENTER I

Subscripted variables have subscripts such as (1), (2), and (3). Other than the subscripts, they
work the same as simple variables. To see for yourself, type both of these lines:

PRINT A; B; C IENTffi)

PRINT A (1) ; A (2) ; A (3) I ENTEfi)

A Way of Organizing Subscripted Variables
{Arrays and the DIM Command)
fake a quick look, and compare the two programs below. Both work the same. Program 1
uses srmple variables; Program 2 uses subscripted variables.

PROGRAM 1

10 DATA 143,215,125,331,442
20 DATA 324,213,115,318,314
30 DATA 223,152,314,92

40 READ A,B,C,D,E
50 READ F,G,H,I,J

60 READ K,L,M,N
70 INPUT "DISTRICT NO. (1-14)";2

75 IF 2>14 THEN 70

80 IF 2=1 THEN PRINT A "VOTES"
90 IF 2=2 THEN PRINT B "VOTES"
100 IF 2=3 THEN PRINT C "VOTES"
110 IF 2=4 THEN PRINT D "VOTES"

120 IF 2=5 THEN PRINT E "VOTES"
130 IF Z=6 THEN PRINT F "VOTES"

140 IF Z=7 THEN PRINT G "VOTES"

150 IF 2=8 THEN PRINT H "VOTES"

160 IF Z=9 THEN PRINT I "VOTES"
170 IF Z=10 THEN PRINT J "VOTES"
180 IF 2=11 THEN PRINT K "VOTES"

190 IF 2=12 THEN PRINT L "VOTES"
200 IF 2=13 THEN PRINT M "VOTES"
210 IF 2=14 THEN PRINT N "VOTES"
220 GOTO 70

PROGRAM 2

10 DATA 143,215,125,331,442

20 DATA 324,213,115,318,314
30 DATA 223,152,314,92
40 DIM A(14)
50 FOR X=1 TO 14
60 READA(X)

70 NEXT X

80 INPUT "DISTRICT NO (1-14)";2
85 IFZ>14THEN80

90 PRINT A(2) "VOTES"
100 GOTO 80

33 I Numeric Arrays

Program 1 is cumbersome to write. Program 2 is short and simple to write.

Enter and run Program 2. Here's how it works:

• Line 40 reserves, or dimensions, space for an array named A with subscripted
variables ranging from A(0) to A(14).

• Lines 50 and 70 set up a loop to count from 1 to 14

Line 60 reads all 14 votes into Array A:

YOUR
A (1) = 1 43
A(2)=215
A(3)=125
A(4)=331
A(5)=442
A(6) = 324
A(?)= 213

COMPUTER'S MEMORY
A(8) =115
A(9) = 318
AC10) = 314
A(11)=223
AC12)=152
A(13) = 314
A(14)=92

• Line 80 asks you to enter a subscript, and Line 90 prints the item you requested.

Line 40 uses a new BASIC command, DIM. DIM's syntax is

DIM vanable(n) Dimensions variable as an array with n subscripts.

Note: Actually, you are only required to use DIM when you plan to use
subscripts higher than 10. However, even if you re not using subscripts higher
than 10, it's a good idea to use DIM anyway, for reserving exactly the right amount
ot memory.

Now that you stored information in an array, it's easy to manage the information. For instance,
add these lines. to change the information:

92 INPUT "DO YOU WANT TO ADD TO THIS";R$
94 IF R$="NO" THEN 80
96 INPUT "HOW MANY MORE VOTES";X
97 A(Z)=A(Z) + X
98 PRINT "TOTAL VOTES FOR DISTRICT "Z"IS NOW "A(Z)

Or add these lines to display the information:

72 INPUT "DO YOU WANT TO SEE ALL THE TOTALS";S$
74 IF S$="YES" THEN GO SUB 110
100 GOTO 72
110 PRINT "DISTRICT", "VOTES"
120 FORX=1TO14
130 PRINT X,A(X)
140 NEXTX
150 RETURN

185

33 I Numeric Arrays

186

Adding a Second Array
{Using 2 Arrays)
Assume you also want to keep track of a second candidate's votes. Candidate B:

ELECTION RETURNS

District Votes for Votes for
Candidate A Candidate B

1 143 678
2 215 514
3 125 430
4 331 475
5 442 302
6 324 520
7 213 613
8 115 694
9 318 420
10 314 518
11 223 370
12 152 412
13 314 460
14 92 502

Add another array to the program Call it Array B The following program records the votes
for Candidate A (Array A) and Candidate B (Array B)

10 DATA 143,215,125,331,442
20 DATA 324,213,115,318,314
30 DATA 223,152,314,92
40 DATA 678,514,430,475,302
5 0 DATA 520,613,694,420,518
60 DATA 370,412,460,502
70 DIM A(14), B(14)
80 FOR X = 1 TO 14
90 READ ACX)
100 NEXT X
11 0 FOR X = 1 TO 14
120 READB(X)
130 NEXT X
140 INPUT "DISTRICT NO.";Z
145 IF Z>14 THEN 140
150 INPUT "CANDIDATE A OR B";R$
160 IF R$="A" THEN PRINT A(Z)
170 IF R$="B" THEN PRINT 8(2)
180 GOTO 140

DO-IT-YOURSELF PROGRAM 33-1

Write an inventory program that keeps track of 12 items (numbered 1-12) and the
quantity you have ot each item.

33 I Numeric Arrays

Dealing The Cards
(An Example of Arrays)
To keep track of 52 cards, you need to use an array. Erase your program. Type and run this one:

40 FOR X=1 TO 52
50 C=RND(52)

90 PRINTC;

100 NEXTX

The computer deals 52 random cards, but if you look closely, you see that some cards are
the same.

To be sure the computer deals each card only once, you can build another array, Array T,
that keeps track of each card dealt. Add these lines:

5 DIM T(52)

10 FOR X=1 TO 52
20 T(X)=X

30 NEXT X

The previous lines build Array T and put all 52 cards in it: T(1) = 1, T(2) = 2, T(3) = 3

Now, add some lines that "erase" each cmd in Array l after it's dealt. Type:

60 IFT(C)=0THEN50
80 T(C)=0

1(52)=52.

Now the computer can't deal the same random card twice. For example, assume the computer
first deals a two. Line 80 changes T(2)'s value from 2 to 0.

Then, assume the computer deals ar1othcr two. Since I ('.J) now equals 0, Line 60 goes back
to Line 50 to deal ;mother card.

Run the program. Note how the computer slows down at the end of the deck. It must try many
d1fterent cards before it finds one that 1t hasn't dealt yet.

To play a card game, you need to keep track of which cards were dealt. You can do this
by building another array, Array D. Add these lines that store all the cards in the order they
are dealt in Array D

7 DIM 0(52)

70 D(X)=T(C)

90 PRINTDCX);

DO-IT-YOURSELF PROGRAM 33-2

Add lines to the program so it displays only your "hand," the first 5 cards dealt.

187

33 I Numeric Arrays

LEARNED IN CHAPTER 33

188

COMMAND

DIM

CONCEPT

arrays

34 I STRING ARRA VS

In the last chapter, you used arrays to manage numbers. Here, you use arrays to manage
words by editing, updating, and printing an entire essay.

Storing Words Into Variables
(String Arrays)
Start with a simple list of words. a shopping list

1. EGGS 7. TOMATOES
2. BACON 8. BREAD
3. POTATOES 9. MILK
4. SALT 10. CHEESE
5. SUGAR 11. FISl1
6. LETTUCE 12. JUICE

Assign each word to a subscripted v;iriahle. This ti111c w;e a subscripted string varial..Jle. For
example, for the first three items, type:

S $ C 1) = "EGGS" I ENTER]

S$(2) = "BACON" (ENTER)

S$(3) = "POTATOES" @TUD

To see how the items are stored, type:

PR I NT S $ (1) , S $ (2) , S $ (3) [ENTER)

189

34 I String Arrays

Now build a program that reads these worns into aII array narnccJ S$ and then displays them

5 DIM S$(12)
1i1l DATA EGGS, BACON, POTATOES, SALT
211) DATA SUGAR, LETTUCE, TOMATOES, BREAD
311) DATA MILK, CHEESE, FISH, JUICE
40 FORX=1T012
50 READS$(X)
60 NEXT X
70 PRINT "SHOPPING LIST:"
80 FORX=1T012
90 PRINTX;S$(X)
100 NEXTX

DO-IT-YOURSELF PROGRAM 34-1

Add some lines to the above program so you can cllcingo any item on tllis list

DO IT-YOURSELF PROGRAM 34 2

Here Is a program tllat uses ar1 array to vmte soI1g lyrrcs

5 DIMA$(4)

1 0 PRINT"TYPE4 LINES"
20 FOR X=1 TO 4
30 INPUT A$(X)
40 NEXT X
50 C LS
60 PRINT "THIS IS YOUR SONG"
70 PRINT
80 FOR X=1 TO 4
90 PRINTX;""; A$(X)

1 00 NEXT X

Add some lines so you can revise any line

190

34 I String Arrays

Writing an Essay
(An Example of String Arrays)
Now that you learned how to use string arrays, it is easy to write a program that stores and
edits what you type. Type this program:

CLEAR 500
5 DIM A$(50)
10 PRINT "TYPE A PARAGRAPH"
20 PRINT "PRESS</> WHEN FINISHED"

30 X = 1
40 A$= INKEY$

50 IFA$= 1111 THEN40

60 PRINT A$;

70 IF A$="/" THEN 110
80 A$(X)=A$(X)+A$
90 IFA$="."THENX=X+1

100 GOTO 40

110 CLS
120 PRINT "YOUR PARAGRAPH;"

130 PRINT

140 FOR Y = 1 TO X - 1
150 PRINT ASCY);

160 NEXTY

170 PRINT

Run the program. To see how each sentence is stored, type these lines:

PR I NT A$ (1) (ENTER]

PR I NT A$ (2) (ENTER]

PRINT A$(3) [~

Heres how the program works:

1. Line 1 clears plenty of string space.

2. Line 5 saves room for an array named A$ that can have up to 50 sentences.

3. Line 30 makes X equal to 1. X will be used to label all the sentences.

4. Line 40 checks to see which key you are pressing If it is nothing(" "), Line 50 sends
the computer back to Line 40.

5. Line 60 prints the key you pressed.

6 Line 70 sends the computer to the lines that print your paragraph when you press
the"/" key.

7. Line 80 builds a string and labels it with number X. S is equal to 1 until you press
a period (.). Then Line 90 makes X equal to X + 1.

8. Lines 140-160 print your paragraph.

For example, if the first letter you press is "R.''

A$(1) EQUALS "R".

If the second letter you press is "O",

A$(1) EQUALS A$(1) · which is "R" + ''O"
or
"RO".

191

34 I String Arrays

192

Assume when A$(1) equals ROSES ARE RED. you press a period. A$(1) then equals the
entire sentence, ROSES ARE RED. The next letter you press is in A$(2).

DO-IT-YOURSELF CHALLENGER PROGRAM 34-3

Here's a tough one (but not impossible) for those intrigued with word processing.
Change the previous program so you can

• Print any sentence

• Revise any sentence

You might need to review the challenger program in Chapter 12. Our answer's in
the back.

Using the Printer
(The PRINT # and LLIST Commands)
If you have a printer, connect it now by plugging it into the Jack marked SERIAL 1/0. Turn
on the printer and insert paper The manual that comes with the printer shows how. Ready?
Type this short program:

10 INPUT A$
20 PRINT #-2,A$

Now type:

L LIST (ENTER I

If your program doesn't list on the printer, be sure the printer is on-line (on) and connected
to your keyboard. Then, type LL Is T ENTER again

Run the program and watch the printer work. PRINT #-2. tells the computer to print, not on
the screen, but on device #-2, which is the printer. Be sure to type a comma after the -2, or
you get a syntax error.

DO-IT-YOURSELF PROGRAM 34-4

Look at the ''Writing an Essay'· program earlier in this chapter. Change Lines 140-160
so that the paragraph prints on the printer rather than on the screen.

Learned in Chapter 34

COMMANDS

LL/ST
PRINT #-2

CONCEPT

string arrays

35 / MUL Tl DIMENSIONAL ARRA VS

Arrays provide an easy way to analyze information. By giving each item more than one
subscript, you can see it through different dimensions

/;
.1/

('

('\

/.

Storing Tables of Numbers
(2-Dimensional Arrays)

Votes for
District Candidate 1

1 143
2 215
3 125

Votes for
Candidate 2

678
E.11'1
4:30

lr1 this chapter, you'll store information in one easy to-manage 2-Jimensional array, Array V.

The following program puts the items in Array V.

5 DIM V(3,2)
10 DATA 143,678,215,514,125,430
20 FOR D=1 TO 3
30 FOR C=1 TO 2
40 READ V(D,C)
50 NEXT C
60 NEXTD

70 INPUT "DISTRICT NO. (1-3)";D
80 IF D<1 OR D>3 THEN 70
90 INPUT "CANDIDATE NO. (1-2)";C
100 IFC<0ORC>2THEN90
110 PRINTV(D,C)
120 GOTO 70

193

35 I Multidimensional Arrays

194

Type and run the program. Notice that each Itern is labeled hy two suhscnpts.

Herc's how the program works:

Line 5 reserves space in memory for Array V. Each item in Array V can have two subscripts.
The first can be no higher than 3. The second, no higher than 2.

Lines 20-60 read all the votes into Array V, giving them each two subscripts:

• The first subscript is the district (Districts 1-3).

• The second subscript is the candidate (Candidates 1-2).

YOUR
V (1 , 1) = 1 43
V(2,1) = 215
V(3,1) = 125

COMPUTER'S MEMORY
V(1,2)=678
V(2,2) = 514
V(3,2) = 430

For example, 678 is labeled V(1,2). This means 678 is from District 1 and is tor Candidate 2.

With all the votes in a two-dimensional array, it's simple to analyze them-in two dimensions.
By adding these lines, tor example, you can print all tt,e votes in two ways: by district and
by candidate.

(First delete lines 70-120)

71/J

81/J
1 '/J '/J
110

1000
1010
1015
1020
1030
1 '/J4'/J
105 '/J
1060
107'/J
1080

2000
2 01 '/J
2015
2020
203'/J
2'/J40
2'/J50
2060
2'/J70
2080

INPUT "TYPE <1> FOR DISTRICT OR <2> FOR
CANDIDATE";R
IF R<1 OR R>2 THEN 70

ON R GOSUB 1 '/J'/J0, 21/J'/J'/J
GOTO 70

INPUT "DISTRICT NO(1-3)";D
IF D<1 OR D>3 THEN 1'/J'/J0
C LS
PRINT @132, "VOTES FROM DISTRICT" D
PRINT
FOR C:::1 TO 2
PRINT "CANDIDATE:" C,
PRINT V(D,C)
NEXT C
RETURN

INPUT "CANDIDATE NO(1-2)";C
IF C<1 OR C>2 THEN 2000
C LS
PRINT @132, "VOTES FOR CANDIDATE"C
PRINT
FOR D=1 TO 3
PRINT "DISTRICT"D,
PRINT V(D,C)
NEXT D
RETURN

35 I Multidimensional Arrays

The Third Dimension
(3-Dimensional Arrays)
You can continue with as many dimensions as you want. You're limited only by how much
information you can fit into the computer's memory.

Add a third dimension to Array V: interest groups. Here's the information:

District 1
District 2
District 3

District 1
District 2
District 3

District 1
District 2
District 3

VOTESFROMINTERESTGROUP1

Candidate 1

143
215
125

VOTES FROM INTEREST GROUP 2

Candidate 1

525
318
254

VOTES FROM INTEREST GROUP 3

Candidate 1

400
124

75

Candidate 2

678
514
430

Candidate 2

54
158
200

Candidate 2

119
300
419

To get all this into your computer's memory, erase your program and type:

5 DIM V(3,3,2)

10 DATA 143,678,215,514,125,430
20 DATA 525,54,318,158,254,200
30 DATA 400,119,124,300,75,419

40 FOR G=1 TO 3
50 FOR 0=1 TO 3
60 FOR C=1 TO 2
70 READ V(G,D,C)

80 NEXTC
90 NEXT D

100 NEXTG
110 INPUT "INTEREST GROUP NO (1-3)";G

120 IF G<1 OR G>3 THEN 110
130 INPUT "DISTRICT NO. (1-3)"; D
140 IFD<1ORD>3THEN130
150 INPUT "CANDIDATE NO. (1-2)";C

160 IF C<1 OR C>2 THEN 150
170 PRINT V(G,D,C>

180 GOTO 110

195

35 I Multidimensional Arrays

196

Run the program, and test the subscripts. Lines 40-100 read all the votes into Array V, giving
them each three subscripts:

• The first subscript is the interest group (Interest Groups 1-3).

• The second subscript is the district (Districts 1-3)

• The third subscript is the candidate (Candidates 1-2).

YOUR COMPUTER'S

V (1, 1, 1) = 143
V(1,2,1) = 215
V(1,3,1) = 125
V(2,1,1) = 525
V(2,2,1> = 318
V(2,3,1) = 254
V(3,1,1) = 400
V(3,2,1) = 124
V(3,3,1) =75

MEMORY

V(1,1,2) =678
V(1,2,2) = 514
V (1 , 3, 2) = 43 0
V(2,1,2)=54
V(2,2,2) = 158
V(2,3,2) = 200
V(3,1,2) = 119
V(3,2,2) =300
V(3,3,2) = 419

For example, 678 is now labeled V(1,1,2). This means 678 is from
Interest Group 1, is from District 1, and is for Candidate 2.

Totakeadvantageofallthreedimensions,deletelines11O-18O
and type:

110 PRINT: PRINT "TYPE <1> FOR GROUP"
120 PRINT "<2> FOR DISTRICT OR <3> FOR CANDIDATE"
130 P=224: INPUT R

14" ON R GOSUB 1"00,2000,3U0
150 GOT0110

1000 INPUT "GROUP (1-3)";G
1010 IF G<1 OR G>3 THEN 1000

1020 CLS
1030 PRINT @102, "VOTES FROM GROUP"G

1040 PRINT@168,"CAND.1"
1050 PRINT @176, "CANO. 2"

1060 FOR D=1 TO 3

1070 PRINT @P, "DIST."D

1080 FOR C=1 TO 2
1100 PRINT @P + 8•C, V(G,D,C);

1110 NEXT C
1120 P=P+32

1130 NEXTD

1140 RETURN

35 I Multidimensional Arrays

2000 INPUT "DISTRICT (1-3)";0

2010 IF D<1 OR D>3 THEN 2000

2020 CL S

2030 PRINT @102, "VOTES FROM DIST. "D

2040 PRINT @168, "CAN D. 1 II

2050 PRINT @176, "CAND. 3"

2060 FOR G=1 TO 3

2070 PRINT @P, "GROUP"G

2080 FOR C=1 TO 2

2100 PRINT @P + 8*C,V(G,D,C);

2110 NEXT C

2120 P=P+32

2130 NEXT G

2140 RETURN

3000 INPUT "CANDIDATE (1-2)";C

3010 IF C<1 OR C>2 THEN 3000

3020 C LS
3030 PRINT @102, "VOTES FOR CAND." C

3040 PRINT @168, II DI s T. 1 II

3050 PRINT @176, II DI s T. 2"

3060 PRINT @184, II DI s T. 3"

3070 FOR G=1 TO 3

3075 FOR D=1 TO 3

3080 PRINT @P + B*D, V(G,D,C);

3110 NEXT D

3120 P=P+32

3130 NEXT G

3140 RETURN

Run the prourarn. You can now get t11ree perc;pectives on the information.

DO-IT-YOURSELF"" PROGRAM 35-1

Write a program to deal the cards using a two-dimensional array. Make the first
dimension the card's suit (1-4) and the second dimension the card's value (1-13).

Learned in Chapter 35

CONCEPT

Multidimensional arrays

197

PART 6 / BACK TO BASICS

Ready for more basics? In this part of the book, you learn some new BASIC words that will
help you refine and polish your programs.

199

36 / NUMBERS

You can use many numeric functions to help with mathematical calculations. This chapter lists
these functions and also shows how you can create some functions of your own.

Arithmetic Functions
{The SQR, FIX, ABS, and SGN Functions)
The first group of functions help with arithmetic problems. They are the SOR, FIX, ABS, and
SGN functions.

SOR lets you find the square root of a number. Its syntax is:

SQ R (number)

number is zero or any positive r1urnber.

As c1n example SOR, type

PR INT SQ R (1 0 0) l~ENTERl

The computer displays 10, the square root of 100.

FIX converts a number to d whole-number by chopping oft c1II the digits to the right of th8
decimal point. Its syntax is:

F I X (number)

As an example of FIX, type:

PRINT FIX (2.7643951) \ENTtBJ

The computer displays 2, the whole portion of 2.7643951.

As another example FIX, this program breaks a number into its whole and fractional portions.

1 0 CLS
20 INPUT "A NUMBER LIKE X.YZ"; X
30 W=FIX (X)
40 F=ABS(X)-ABS(W)
50 PRINT "WHOLE PART="; w
60 PRINT "FRACTINAL PART="; F
70 GOTO 20

201

36 I Numbers

202

SGN tells you whether a number is positive, negative, or zero. Its syntax is:

s G N (number)

As an example of SGN, run this program:

10 INPUT "TYPE A NUMBER"; X
20 IF SGN(X) = 1 THEN PRINT "POSITIVE"
30 IF SGN(X) = 0 THEN PRINT "ZERO"
40 IF SGN(X) = -1 THEN PRINT "NEGATIVE"
50 GOTO10

ABS tells you the absolute value of a number (the magnitude of a number without respect
to its sign). Its syntax is:

ABS(number)

As an example of ABS, run this program:

10 INPUT "TYPE A NUMBER"; N
20 PRINT "ABSOLUTE VALUE IS" ABS(N)
30 GOTO 10

Trigonometry Functions
(The SIN, COS, TAN, and ATN Functions)
The next group of functions calculate trigonometry operations (calculating unknown sides and
angles of a triangle). They are the SIN, COS, LOG, and EXP functions.

SIN calculates the sine of an angle. Its syntax is:

s IN (angle)
angle is the angle's size in radians.

COS calculates the cosine of a triangle. Its syntax is:

cos (angle)
angle is angle's size in radians.

TAN calculates the tangent of an angle. Its syntax is

TAN (angle)

angle is angle's siLe in radians.

ATN calculates tt1c arctangent of a triangle. Its syntax is:

ATN (angle)
angle is angle's size in radians.

The following trignometry programs use SIN, COS, TAN, and ATN to calculate unknown sides
and angles of a triangle. You can use these programs for many practical applications, and
you do not have to understand trigonometry to use them.

One practical application of these programs is building. For example, if you are building a
stairway, you can use these programs to calculate the slope and height of the stairs.

36 I Numbers

Each program uses the labels SA, SB, SC, AA, AB. and C\C to label the sides and angles
ol a triangle. as shown in this illustration.

AB

SB

Trie first program has you enter Side AC and Angles AA and AB. It then uses SIN to calculate
Sides SA and SB.

5 CL$
10 INPUT "WHAT IS ANGLE AA (IN DEGREES)"; AA:

IF AA <=0 OR AA>=180 TH EN 100
20 INPUT "WHAT IS ANGLE AB (IN DEGREES)"; AB:

IF AA <=0 OR AB >=180 THEN 100
30 INPUT "WHAT IS SIDE SC (SC)"; SC:

IF SC<=0 THEN 100
40 AC=180-(AA+AB) 'VALUE OF ANGLE AC
50 IF (AA+AB+AC) <> 180 THEN 100

'TR I ANG LE=180 DEGREES
60 AA=AA/57. 29577951: AB=AB/57. 29577951:

AC=AC/57.29577951
'CONVERT DEGREES TO RADIANS

70 SA=(SIN(AA))/(SIN(AC))*SC: IF SA<0 THEN 100
80 SB=(SIN(AB))/(SIN(AC))*SC: IF SB<0 THEN 100
90 PRINT"SIDESA (SA) IS"SA"LONG": PRINT"SIDESB

(SB) IS" SB "LONG": GOTO 10
100 PRINT "SORRY, NOT A TRIANGLE, TRY AGAIN": GOTO 10

The second program has you enter Sides SA and SB and Angle AC. It then uses COS to
calculate Side SC.

5 CL S
10 INPUT "WHAT IS ANGLE C (AC)"; AC: IF AC<0 OR AC>180

THEN100
20 AC=AC/57. 29577951: 'CONVERT DEGREES TO RADIANS
30 INPUT "WHAT IS SIDE A (SA)"; SA:IF SA<=0 THEN 100
40 INPUT "WHAT IS SIDE B (SB)"; SB: IF SB=<0 THEN 100
50 SC=((SAt2)+(SBt2))-(2*(SA*SB*COS(AC))): IF SC<0

THEN100
60 PRINT "SIDE C (SC) IS" SQR(SC) "LONG": GOTO 10
100 PRINT "SORRY, NOT A TRIANGLE, TRY AGAIN": GOTO 10

The third program has you enter Side SB and Angle AA (Angle AC must be 90 degrees.)
It then uses TAN to calculate Side SA

5 CLS
10 INPUT "WHAT IS SIDE B (SB)"; SB: IF SB<=0 THEN 100
20 INPUT "WHAT IS ANGLE A (AA)"; AA: IF AA<=0 OR

AA>=180 TH EN 100
30 AA=AA/57.29577951 'CONVERT DEGREES TO RADIANS
40 SA=SB*(TAN(AA)): IF SA<=0 THEN 100
50 PRINT"SIDEA (SA) IS"SA"LONG": GOT010
100 PRINT "SORRY, NOT A TRIANGLE, TRY AGAIN": GOTO 10

203

36 I Numbers

204

The fourth program has you enter Sides SA and SC and Angle AB. It then uses TAN and
A TN to calculate Angles AA and AC.

10 C LS
20 INPUT "WHAT IS SIDE A (SA)"; SA: IF SA<=0 THEN 150
30 INPUT "WHAT IS SIDE C (SC)"; SC: IF SC<=0 THEN 150
40 INPUT "WHAT IS ANGLE B (AB)"; AB: IF AB<=0 OR

AB>=180 THEN 150
50 X=(180-AB): 'AA+AC=180-AB
60 X=X/57.29577951: 'CONVERT DEGREES TO RADIANS
70 Y=((SA-SC)/(SA+SC))*TAN(X/2)
80 Z=ATN(Y)
90 AA=(X/2)+(2)
100 AC=(X/2)-(Z)

110 AA=AA*57.29577951: 'CONVERT RADIANS TO DEGREES
120 AC=AC*57. 29577951: 'CONVERT RADIANS TO DEGREES
130 PRINT "ANGLE A (AA) IS" AA "DEGREES"
140 PRINT "ANGLE C (AC) IS" AC "DEGREES": GOTO 20
150 PRINT "SORRY, NOT A TRIANGLE, TRY AGAIN": GOTO 20

The trignometry functions use radians, rather than degrees, to measure an angle. So, each
of the above programs converts degrees to radians and radians to degrees. These are the
formulas we used to make these conversions:

Degrees to Radians: Degrees/57.29577951
Radians to Degrees Radians*57.29577951

Logarithms and Exponentials
(The LOG and EXP Functions)
The next group of functions let you calculate natural logarithms and natural exponentials of
numbers. They help with higher mathematic operations.

LOG calculates the natural logarithm of a number. Its syntax is:

LOG (number)
number is greater than zero.

The natural logarithm of a number is the power to which 2. 718281828 (the base) must be
raised to result in the number. For example, type:

PRINT LOG (8) 'ENTOC

The screen displays 2 07944154 (the natural logarithm). This is because 2 .718281828 (the
base) must be raised to the 2.07944154 power to result in 8 (the number).

The logarithm of a number is the same as the natural logarithm, except the base does not
have to be 2.718281828; it can be any number. You can also use LOG to calculate the logarithm
of a number by using this formula:

LOG (number)ILOG (base)

For example, type:

PRINT LOG(8)/LOG(2) 'ENTER)

36 I Numbers

The screen displays 3 (the logarithm). This is because 2 (the base) must be raised to the third
power to result in 8 (the number).

EXP calculates the natural exponential of a number. Its syntax is:

Ex P (number)
number is less than 87.3365.

The natural exponential of a number is 2. 718281828 raised to that number. For example, type

PR I NT EXP (8) CENTER I

The screen displays 2980.95799 (the natural exponential). This is because 2.718281828 raised
to the 8th power results in 2980.95799.

Creating Your Own Function
The DEF FN Command
The llEF FN command lets you cwatc or deftnc your own nurneric function Its syntax Is.

DEF F N namr- (dummy vanables) - formula
name is lhe r13me of your !unction.

dummy vanables are lhe variable'.; lrl3t your formula 11ses

formula is the operation that your !unction rloe:s

/\s an example of DEF FN, lype this lirw

10 DEF FNTWO(N)=N*Z

This line detirn,s a tunct1on named TWO. The TWO fum:tion does a simple operatior1. II multiplies
any number tiy 2.

Add tt,ese lines lo 1hr, program

20 INPUT X
3(1) PRINT FNTWO(X)
4(1) GOTO 20

Run the program. Line 30 uses the TWO function to multiply the number you enter by 2.

As another example of DEF FN, consider a math operation that you had to do earlier in this
chapter's trigonometry programs, converting between degrees and radians. With DEF FN,
you can define and use your own function that does the conversion.

Try doing this in the first trigonometry program (the program that uses SIN to calculate Sides
SA and SB). Add Line 7 to define the conversion function. Then change Line 60 to use the
conversion function.

7 DEF FNR(X)=X/57.29577951
6(1) AA=FNR CAA): AB=FNR (AB); AC=FNR (AC)

Note that whenever you use DEF FN, be sure to define a function before using it. Otherwise,
a ?UF ERROR (Undefined Function Error) occurs.

205

36 I Numbers

206

DO-IT-YOURSELF PROGRAM 36-1

Use DEF FN to:

Convert radians to degrees
2. Create a math function that cubes numbers.

A quick reference table of many useful mathematical formulas (plane geometry, trig, and
algebra) is in "Odds and Ends."

Learned in Chapter 36

COMMAND

DEF FN

FUNCTIONS

SOR
SIN
cos
TAN
ATN
LOG
EXP
FIX

SGN
ABS

37 I STRINGS

This chapter lists three functions and one command you can use to manipulate strings.

Displaying Strings of Characters
(The STRING$ Function)
The STRING$ function lets you create a string of characters. You can produce graphs. tables,
and any other text display. Its syntax is:

STRING$ (length.character)

length is a number from 0 to 255.

character is either the character enclosed 1n quotes or the numeric code of the
character. (For the numeric code of each character, see "Character Codes.")

As an example of STRING$, type:

PR INT ST R ING$ (3 0 , "A") (ENTER)

The screen displays 30 A's.

207

37 I Strings

208

As another example, change the Lines program as follows:

5 CLS
6 X$=STRING$ (13,"*")
7 PRINT @96, X$; "LINES";X$
9 FOR X=1 TO 1000: NEXT X
10 PMODE 3,1
15 PCLS
20 SCREEN1,1
25 LINE (0,0)-(255,191),PSET
30 LINE (0,191)-(255,0),PSET
40 GOTO 40

Line 6 assigns X$ the value STRING$(13,"*"), a string of 13 asterisks.

Line 7 tells the computer to print (starting at Print Screen Location 96) X$, then the word LINES,
followed again by X$ again. (See the Text Screen Worksheet in the Part 7.) Because X$ equals
13 asterisks(*), those characters are printed before and after LINES.

To spruce up the title even more, add these two lines:

8 Y$=STRING$(31,42): PRINT@ 384,Y$

This time, you tell the computer to display the character represented by Code 42. which
represents an asterisk.

DO-IT-YOURSELF PROGRAM 37-1

Have you ever written lists to check off jobs that you or other people have to do?

Using STRING$, write a program that creates a check-off list.

Converting Numbers to Strings
(The STA$ Function)
The STA$ function converts a string to a number. Its syntax is:

s TR $(number) Returns a string containing number.

This short program shows how STR$ works:

10 INPUT "TYPE A NUMBER"; N
20 A$=STR$(N)
30 PRINT A$+" IS NOW A STRING"

Searching for Strings
(The INSTR Function)
The INSTR function lets you search through one string for a another string. Its syntax is:

IN s TR (position, search-string, target)

position specifies the position in the search-string where the search is to begin
(0 to 255). If you omit position, the computer automatically begins at the first
character.

37 I Strings

search-string is the string to be searched.

target is the string for which to search.

INSTR returns a O if any of the following is true:

• The position is greater than the number of characters in the search-string.

• The search-string is null (contains no characters).

• INSTR cannot find the target.

This program shows how INSTR works:

5 CLEAR 500
1 0 C LS
15 INPUT "SEARCH TEXT";S$
20 INPUT "TARGET TEXT";T$
25 C=0: P=1 'P=POS IT ION

30 F=INSTRCP,S$,T$)

35 IF F=0 THEN 60
40 C=C+1
45 PRINT LEFT$ (S$,F-1)+STRING$(LEN(T$), CHR$(128)) +

RIGHT$(S$,LEN(S$)-F-LEN(T$)+1)
50 P=F+LEN(T$)
55 IF P<=LEN(S$)-LEN(T$)+1 THEN 30

60 PRINT "FOUND";C; "OCCURRENCES"

Here is a sample run of the above program. However, you can enter whatever text you need.

SEARCH TEXT? YOU SHOULD TRY TO USE YOUR COLOR COMPUTER
AS MUCH AS POSSIBLE.
TARGET TEXT? CO
YOU SHOULD TRY TO USE YOUR [] [] LOR COMPUTER AS MUCH AS
POSSIBLE. YOU SHOULD TRY TO USE YOUR COLOR[] []MPUTER AS MUCH AS
POSSIBLE
FOUND 2 OCCURRENCES
OK

This is how the program works

1. Line 15 assigns S$ (search) the value, YOU SHOULD TRY TO USE YOUR COLOR
COMPUTER AS MUCH AS POSSIBLE.

2. Line 20 assigns T$ (target) the value of CO.

3. Line 30 tells the computer to start searching for T$ at the first position (P) in S$.

4. In Lines 45 and 55, INSTR locates T$ and then prints and blocks out T$ (CHR$(128)).
It searches for the next occurrence of T$ and does the same.

5. Line 60 tells the computer to display the number of occurrences of T$ in S$.

DO-IT-YOURSELF PROGRAM 37-2

Write a program that returns the first and second occurrences of the B in ABCDEB.

209

37 I Strings

210

The following data storage program contains a mailing list of names and addresses This is
an easy way to store information. Notice that we saved storage space by not putting spaces
between the words. Doing so makes it difficult for you to read. but not for the computer· to do so.

Notice also that we assign a leading asterisk(') to zip codes so the computer doesn't confuse
them with street numbers.

In thrs case, we're looking for the names and addresses of all individuals who live in the area
specified by zip code 650 - Consequently *650 is the target (A$).

10 CLEAR1000
20 CLS
30 A$="*650"
40 X$= 11 JAMES SMITH,6550HARRISON,DALLASTX*75002:SUE

SIM,RT3,GRAVIOSMO*65084:LYDIA LONG,3445SMITHST,
ASBURYNJ*32044: JOHNGARDNER, BOX60EDMONTON ALBERTACA"

50 Y$="KERRY FEWELL,45GMAPLE,NEWORLEANS*89667:BILL
DOLSEIN,6313E121KANSASCITYMO*64134:STEVE HODGES,
RT4FLORENCEME*65088"

60 Z$= 11 KAREN CROSS,314HURLEYWASHINGTONDC*10011 :ASHER
FITZGERALD,2338HARRISONFTWORTHTX*76101:LIZ DYLAN,
BOX999NEWYORKNY*86866"

So that your computer can search X$. add this line

70 PRINT INSTR(X$,A$)

Run the program. Your screen displays

62
OK

This tells you the strrng contains a name and address you need.

What about Y$? Edit Line 50 so the computer searches through those addresses. Does it
tell you it found the needed name?

Now, try Z$. Displaying a zero is your computers way of saying. There aren't any names
you need on this list."

DOIT YOURSELF PROGRAM 37-3

Modify the mailing list program so the following are true

• X$ contains two addresses that have a 650- zip.

• The computer looks for every occurrence of *650, not only for the first.

37 I Strings

Replacing Strings
(The MID$ Command)
The MID$ command gives you a powerful string editing capability by letting you replace a
portion of one string with another. The syntax of MID$ is as follows:

MI D $ (oldstring,position,length} = newstring

oldstring is the variable-name of the string to replace.

position is the number of the position of the first character to be changed.

length is a number of characters to replace. If you omit length, the computer
replaces all of oldstring.

newstring is the string that replaces the specified portion of oldstring.

Note: If newstring has fewer characters than length specifies, the computer
substitutes all of newstring. newstring is always the same length as oldstring.

As an example of MID$, run this program:

5 CLS
10 A$= 11 KANSAS CITY, MO"
20 MID$(A$,14)="KS"
30 PRINT A$

Line 10 assigns A$ the value KANSAS CITY, MO. Then Line 20 tells the computer to use
MID$ to replace part of the oldstring (A$) with KS, starting at Position 14.

Change Position 14 to 8 and run the program. The result is

KANSAS KSTY, MO

Now, add the length option to Line 20

20 MID$(A4,14,2)="KS"

Notice that it doesn't affect the result because news/ring and oldstring are both two characters
long. Change length to 1:

20 MID$(A$,14,1)="KS"

The computer replaces only one character in oldstring, using the first character in KS.

MID$ is doubly effective when used with INSTR. Using the two, you can "search and destroy"
text. INSTR searches; MID$ changes, or "destroys." The following program illustrates this:

5 CLS
10 INPUT "ENTER A MONTH AND DAY (MM/DD), ";XS
20 P=INSTR(X$,"/")
30 IF P=0 THEN 10
40 MIDS(XS,P,1)= 11 - 11

50 PRINT XS" IS EASIER TO READ, ISN'T IT?"

In this program, INSTR searches for a slash (/). When it finds one, MID$ replaces it with a
hyphen(-).

211

37 I Strings

212

Characters and Codes
The ASC and CHA$ Functions
Every character has a numeric value. These numeric values are called ASCII codes. (For you
technical types, ASCII stands for the American Standard Code for Information Interchange.)
This is how the computer works with characters. To see what these values are, look at Table
7.1 in Part 7 of this book. Look up the letter 'A'. Note that it has a decimal code value of
65. Let's use BASIC's CHA$ function to print the character that has a value of 65. Type:

PR I NT C H R $ (6 5) (lliT-EJf)

The computer prints:

A

The syntax for CHA$ is:

CHR$ n
Returns the character corresponding to character code n

As you might have already guessed, BASIC has a function for going the other direction as
well. ASC converts a string such as "A" to an ASCII value, in this case 65. Type:

p R INT As C (II A II) (J;;_NTERJ

The computer prints:

65

The syntax for ASC is:

ASC (string)

Returns the ASCII code ot the first character in string

Now let's combine ASC ;md CHR$ to create a secret message encoder Our secret message
encoder will take each letter and movr, 1t up to the next leader. 'A' becomes ·s·, 'B' becomes
'C', on through 'Y' becoming 'Z'. What happens to 'Z'? 'Z' becomes 'A'! With this code, the
word CAT becomes DBU, and DOG becomes EPH. Type in:

10 A$=INKEY$:!F A$= 1111 THEN 10:REM WAIT FOR KEY
20 IF A$< "A" OR A$> 11 Z 11 THEN 10:REM ONLY A-Z
30 B=ASC (A$): REM GET ASCII CODE OF KEY PRESSED
40 B = B + 1: REM MOVE UP TO NEXT LETTER
50 IF A$= 11 Z 11 THEN B = 65:REM IF 'Z', THE MAKE 'A'
60 PRINT CHR$ (B) ;
70 GOTO 10

RUN the program, and type in your secret message. Just for fun, can you figure out how
to make the program print spaces when you press the space bar? Can you write a program
to decode the messages you write?

37 I Strings

DO-IT-YOURSELF PROGRAM 37-4

Pretend you worked at a telephone company in the days when telephone exchanges
were being switched from alpha-characters to numeric-characters. Write a program
that uses MID$ to replace all alpha-exchanges with numbers. Be sure to clear enough
string space or you get a ?OS ERROR.

COMMAND

MID$

Learned in Chapter 37

FUNCTIONS

STRING$
INSTR
STR$
ASC

CHR$

213

38 I IN AND OUT

Input/output statements let you send data from the keyboard to the computer, from the computer
to the TV, and from the computer to the printer. These functions are primarily used inside
programs to send out data, results and messages.

Another Way Of Inputting
{The LINE INPUT Command)
The LINE INPUT command is similar to INPUT. except for these differencE:s:

• When the statement executes. the computer does not display a question mark wr1ile

awaiting keyboard input

• each LINc INPUT staterner1t can assIq11 a value to cmly one variable.

• The computer accepts cur111r1,i;; ;rncJ q11otaticm marks as part of the string input

• Leading blanks, rather th;m being ignored become part of the string variable.

Its syntax is:

LINE INPUT "prompt" stnng van able

prompt is the pror,,pting message

string variable is the name assigned to the line that is input from the keyboard.

With LINE INPUT, you can enter string data without worrying about accidentally including
delimiters such as commas, quotation marks. and colons. The computer accepts everything.
In fact, some situations require that you enter commas, quotation marks, and leading blanks
as part of the data.

Examples:

LINE INPUT X $ (ENTER '

?15

38 I In and Out

216

This command lets you enter X$ without displaying any prompt.

LINE INPUT "LAST NAME, FIRST NAME?";N$CENTER)

This command displays the prompt "LAST NAME, FIRST NAME?" and enters data Commas
do not terminate the input string. Notice that the prompt includes the question mark and the
following space.

To understand LINE INPUT better, enter ,ind run the following program.

10 CLEAR 300: CLS
20 PRINT "LINE INPUT STATEMENT": PRINT

30 PRINT:PRINT "*** ENTER TEXT***"
40 '*** GET STRING, THEN PRINT IT***
50 A$="" 'SET A$ TO NULL STRING
60 LINE INPUT "==>";A$
70 IF A$="" THEN END 'IF ENTER PRESSED WITHOUT TYPING ANYTHING,

STQPI

80 PRINT A$
90 GOTO 50

Customized Printing
(The PRINT USING Command)
The PRINT USING command lets you display strings and numbers in a "customized format.
This can be especially useful for accounting reports, checks, tables, graphs, or other output
that requires a specific print format.

HP.re is PRINT USING's syntax

PRINT US ING format;item-!,st

format 1s a string expression that tells the computer the format to use in printing each
item 1n item-list. It consists of field specifiers and other characters and 1s one (or one
set).

item-list is the data to be formatted.

Note: PRINT USING does not automatically print leading and trailing blanks around
numbers. It prints them only as you indicate in format.

You can use the following field specifiers as part of format.

$$
• *$ tttt
+

$ %

38 I In and Out

The following explains each field specifier, and includes examples of its use.

A number sign specifies the position of each digit in the number you enter. The number
signs establish the length of the numeric field.

..

If the field is larger than the number, the computer displays the unused positions
to the left of the number as spaces and those to the right as zeros.

PRINT USING "#####";66.2(ENTER
66

If the field is too small for the number, the computer displays the number with a leading
% sign

PRINT USING "#";66.2~NTERJ
%66

A period specifies the position of the decimal point in the number you enter. You
can place the decimal point at any field location that you established with the number
sign. The computer automatically rounds off any digits to the right of the decimal
point that don't fit into the field.

PRINT USING "#.#";66.25CEIDER
%66.3

PRINT USING "##.#";58. 76CEml:R
58.8

PRINT USING"##.## "; 10.2,5.3,
66.789,.234(ENTER)
10.20 5.30 66.79 0.23

Note: In the last example, format contains three spaces after the final number
sign. These spaces separate the numbers when the computer displays them.

The comma, when placed in any position between the first digit and the decimal
point. displays a comma to the left of every third digit. The comma establishes an
additional position in your numeric field. To avoid an overflow (indicated by a leading
percent sign), place a comma at every third position in the numeric field. Overflows
occur when the field isn't large enough.

PRINT USING"#########,"; 12345678
12,345,678

PRINT USING"#########,"; 123456789
%123,456,789

PRINT USING"###,###,###"; 123456789
123,456,789

When you place two asterisks at the beginning of the numeric field, the computer
fills all unused positions to the left of the decimal with asterisks. The two asterisks
establish two more positions in the numeric field.

PRINT USING"**####"; 44.0
****44

$ When you place a dollar sign ahead of the numeric field, Hie computer places a dollar
sign ahead of the number when displaying 1t. This, of course, is handy when you
are working with money.

PRINT USING"$###.##"; 18.6735
$ 18.67

217

38 I In and Out

218

$$ When you place two dollar signs at the beginning of the field, the computer displays
a floating dollar sign immediately preceding the first digit

PRINT USING"$$##.##"; 18.6735
$18.67

• *$ When you place tr1is combination of symbols at the beginning of the field, the computer
fills the vacant positions to the left of the number with asterisks and places a dollar
sign in the position immediately preceding the first digit

PRINT USING"**$.##"; 8.333
*$8.33

+ When you place a plus sign at the beginning or end of the field, the computer precedes
all positive numbers with a plus sign and all negative numbers with a minus sign.

PRINT USING"+**####"; 75200
*+75200

PR I NT US I NG "+###"; -216
-216

When you place a minus sign at the end of the field, the computer follows all positive
numbers with a space and precedes all negative numbers with a minus sign.

PRINT USING"####.#-"; -8124.420
8124.4-

% A percent sign defines a string of spaces or text The first percent sign starts the
string, and the second percent sign defines the end of the string

PRINT USING "%5/3=%##.####";5/3
%5/3=% 1.6667

tttt Four up-arrows specifies scientific notation printout Use tl1e number sign to control
the mantissa printout. PRINT USING will add the power of ten exponent prefaced
by the letter "E".

P R I N T U S I N G " # # • # # # tttt 11 ; 5 5 5 5 5 / 3
1.852E+04

An exclamation point tells PRINT USING to print the first character in a string.

PRINT USING 11 1 11 ;"YESTERDAY"
y

To see PRINT USING in use, run the following program:

5 CLS
10 A$="**$##,######.## DOLLARS"
20 INPUT "WHAT'S YOUR FIRST NAME";F$
30 INPUT "WHAT'S YOUR MIDDLE NAME";M$
40 INPUT "WHAT'S YOUR LAST NAME";L$
50 INPUT "ENTER THE AMOUNT PAYABLEll;P
60 CLS
70 PRINT "PAY TO THE ORDER OF";
80 PRINT USING "l";F$; 11 • 11 ;M$; 11 • 11 ;

90 PRINT L$
100 PRINT:PRINT USING A$;P
110 GOTO110

38 I In and Out

Line 10 defines the format, using **$to fill the leading spaces with asterisks and placing a
dollar sign directly before the first number. This format is sometimes used to protect checks
from being altered.

Line 10 also sets up the numeric field using the # sign. So, whenever you enter a number
that is smaller than the numeric field, the computer precedes the number with asterisks to
fill the unused spaces. Included in Line 10 are two more field specifiers. the decimal point
and the comma.

The computer displays the decimal point at only those positions specified. Because you tell
the computer to include two places to the right of the decimal (for cents), the computer rounds
all numbers of more than two digits to two digits. If you enter a number that has one or no
digits to the right of the decimal point, the computer inserts zeros.

The exclamation marks in Line 80 tell the computer to use only the first character (the initial)
of F$ (your first name) and of M$ (your middle name).

DO-IT-YOURSELF PROGRAM 38-1

Change the program so that no leading asterisks appear on the check.

DO-IT-YOURSELF PROGRAM 38-2

Write a program that creates a table showing your income and expenses on a monthly
basis. Don't bother to itemize your expenses; simply calculate the totals and the net
result (plus or minus).

Use STRING$ to organize the table, making it flexible enough so you can use it month
after month without changing the entire program.

Finding Your Position
(The POS Function)
The POS function calculates the current cursor position on the low-resolution text screen or
the carriage position on the printer. Its syntax is

POS (device number)

device number is O (low-resolution text screen) or -2 (printer)

As an example of POS, type:

PRINT TAB (8); POS (0)

The screen displays the number 8 at Column 8 in the current line.

Note: The leading space before 8 causes it to appear in Column 9.

219

38 I In and Out

220

One way to use POS Is to disable the wrap-around feature on the screen or the printer. Doing
this prevents words from being broken in the middle. On the other hand, it necessarily shortens
the line length. Run the following program to see POS at work

5 CL S
10 A$=INKEY$
20 IFA$=""THEN10
30 IF POS (0)>22 THEN IF A$=CHR$(32) THEN A$=CHR$(13)

40 PRINT A$;
50 GOTO 10

This program lets you use the keyboard as a typewriter POS watches the end of the line so
no word is divided

In Line 30, the computer cl1ecks to see if the "current" cursor position is greater than Column
22. (The screen is 32 columns wide.) It the cursor passes Column 22. the computer begins
a new line the next time you press the space bar (CHR$(32)). When the computer decides
to begin a new line. It does so by printing a carriage return (CHR$(13)). In effect. tne computer
presses ~NT·E-Ff•.

DO-IT YOURSELF PROGRAM 38-3

Write a program tl1at uses POS to space words evenly on a single line

Finding Your High-Resolution Position
(The HSTAT Command)
POS does not work on the higl1-resolution screen, but its counterpart HSTAT. returns even
more information than POS does

The HSTAT command returns the x and y coordinates of the current cursor position It also
returns the character at that position as well as the character's attributes. which we discuss
shortly.

Unlike POS, whid1 is a function. HSTAT is a command. Its syntax Is

H s TAT dummy-vanable1 dummy-variable2,
dummy-vanable3 dummy-variab/e4

dummy-variable 1 Is aI1y string variable. After HST AT is executed, it contains the cnaracter
at the current positior1

dummy-variable2 Is any numeric variable. After HST AT Is executed. it contains tne attributes
of the current position

dummy-vanable3 Is any numeric variable. After HSTAT is executed. it contains the x
coordinate of tne current posIt1on.

dummy-vanable4 Is any numeric variable. After HSTAT is executed. 1t contains they
coordinate of the current position.

As an example of using HSTAT type

HSTAT A$, B, C, D

38 I In and Out

After this command is executed, A$ contains the character at the current position, B contains
the character at the current position's attributes, C contains the current position's x coordinate,
and D contains the current position's y coordinate.

The following program prints an "A" on the screen and then uses HST AT to check if the "A"
is really in the right location.

1 0 WIDTH40
20 LOCATE 19,11
30 PRINT "A";
40 LOCATE 19,11
50 HSTAT A$,A,X,Y
60 LOCATE 0,14
70 PRINT A$,X,Y

To interpret the information regarding a character's attribute, you need to understand machine
language. The high-resolution screen uses two bytes to store each character. One byte stores
the character code; the other stores the character's attributes.

The attribute byte contains the following information:

Bits 0-2 Background color (Palette 0-7)
Bits 3-5 Foreground color (Palette 8-15)
Bit 6 Underline
Bit 7 Blink rit 1 /::1 second rate

When you execute HSTA T. it returns the actual attribute byte. To be able to interpret this byte,
you need to convert it to its binary representation and then figure out which bits are set.

Checking the Time
(The TIMER Function)
Your computer has a built-in timer that measures time in sixtieths of a second (approximately).
The moment you power-up the computer, the timer begins counting at zero. When it counts
to 65535 (approximately 18 minutes later), the timer starts over at zero. It pauses during cassette
and printer operations.

At any instant, you can see the count of the timer by using the TIMER function. Type:

PR INT T IM ER CE..t{TERJ

The TIMER function displays a value in the range 0-65535.

You can also reset the timer to any specified time by typing:

TIMER= number IENTERI

number is in the range 0-65535.

221

38 I In and Out

222

To see TIMER (and PRINT @ USING, another "new" function), run the following program
called "Math Quiz." It presents you with a math problem. When you press :A, B, '.l;J, or
CQJ, the computer tells you whether the answer is right or wrong. Then, the computer uses
the timer to tell you the time you took to answer (using TIMER).

5 WIDTH 32
10 DIM CH(3), L$(3) 'CH(#)=CHOICES, L$=ANSWER FORMATS
20 LL=10:UL=20: 'LOWER LIMIT AND UPPER LIMIT FOR HAND V
30 NV=UL-LL+1
40 P$="WHAT'S ### + ### ?": 'QUESTION FORMAT
50 FOR I:::O TO 3 'INITIALIZE CH()
60 L$(I):::CHR$(I+65)+") ###"
70 NEXT I
80 CLS
90 X=INT(RND(NV)+LL-.5): 'GET RANDOM X BETWEEN LL

AND UL
100 Y:::INT(RND(NV)+LL-.5): 'GET RANDOM Y BETWEEN LL

AND UL
110 R=INT(X+Y+.5) 'CORRECTANSWER
130 FOR I:::0 TO 3 'GET MULT. CHOICES
140 CH(I):::INT(RND(NV)+LL-.5)

150 NEXT!
160 RC=RND(4)-1 'MAKE 1 CHOICE RIGHT
170 CH(RC):::R
180 PRINT@ 32, USING P$;X,Y 'DISPLAY PROBLEM
190 FOR LN=3 TO 6
200 PRINT@ LN*32+10, USING L$(LN-3);CH (LN-3)

210 NEXT LN
220 TIMER =0
230 A$:::" 11 'CLEAR KEYBOARD
240 AS=INKEY$: IF A$="" THEN 240
250 SV=TIMER 'IF KEY PRESSED, SAVE TIMER CONTENTS
260 IF A$< 11 A 11 OR AS>"D" THEN 240 'INVALID KEY -

GO BACK
265 PRINT@8*32+10,A$
270 K=ASC(A$)-65
280 IF CH(K)=R THEN PRINT "RIGHT!":GOTO300
290 PRINT "WRONG I ANSWER IS ";R
300 PRINT "YOU TOOK"; SV/60; "SECONDS"
310 INPUT "PRESS <ENTER> FOR NEXT PROBLEM"; EN
320 GOTO 80

Through trial and error. change the upper and lower limits (Line 20) for h and v. Make the
program perform a mathematical operation other than addition, or have the computer keep
score, based on your time. Add five seconds for each incorrect answer.

Changing Devices
(Using Device Numbers)
Did you ever think of your video display as an "output" device and your keyboard as an
"input" device?

With PRINT, PRINT USING. LINE INPUT, and POS, you can use device numbers to direct
input or output. For instance, suppose you type:

PRINT #-2, USING "###.###";123.45678(ENTERI

The screen remains ·'silent'· while the printer prints:

123.457

38 I In and Out

You can use any of the available field specifiers with PRINT #-2, USING.

POS(-2) returns the printer's current print position as it changes. Note that the position is figured
internally, not mechanically.

LINE INPUT# works similarly, with the difference that it lets you read a "line of data" from
a cassette file.

LINE INPUT# reads everything from the first character up to whichever of the following comes
first:

• A carriage-return character that is not preceded by a line-feed character

• The 249th data character

• The end-of-file

Other characters encountered (quotes, commas, leading blanks, and line feed/carriage return
sequences) are included in the string. For instance:

LINE INPUT #-1,A$

sends a line of cassette file data into A$.

The following program uses LINE INPUT# to count the number of lines in any cassette-stored
program that is CSAVED in ASCII format (using the A option)

10 CLEARSOO
20 LINE INPUT "NAME OF DATA FILE? ";F$
30 K=0 'K IS THE COUNTER
40 OPEN"I",-1,F$
50 IFEOF(-1)THEN100
60 LINE INPUT #-1, A$
70 K=K+1
80 PRINT A$
90 GOTO 50
100 CLOSE #-1
110 PRINT "FILE CONTAINED";K;"LINES"

Learned in Chapter 38

COMMANDS

LINE INPUT
PRINT USING

HSTAT

FUNCTIONS

POS
TIMER

223

39 / BUGS

In this chapter, we deal with the inevitable subJect of bugs (errors in your program). Although
we can't prevent bugs from occurring, we can certainly give you ways to track, trace, and
trap bugs so they no longer cause a serious problem.

Tracking Bugs
(The STOP and CONT Commands)
BASIC lets you track an error with two commands, STOP and CONT. Their syntaxes are:

STOP Temporarily stops the execution of a BASIC program.

co NT Continues the execution of a BASIC program

As an example of using these commands. assume you have entered the following BASIC
program that does various computations on a number and stores the result in Variable A:

10 A = 1
1 5 FOR N = 1 TO 10
20 A = A + 1
30 A = A * 2
40 NEXT N

For some reason, Variable A does not end up containing the number you think it contains.
To see what is causing the problem, you could add these lines:

25 STOP
35 STOP

After adding these lines, you could run the program again. When the computer gets to the
first STOP command it prints:

BREAK IN 25

This indicates that the computer has temporarily stopped program execution, but it has not
ended the program. You could then type:

PR I NT A (ENTER)

The computer prints the value of A at this point of program execution. To continue program
execution, you could type:

CONT IENTERI

When the computer gets to the next STOP command it prints:

BREAK IN 35

You could then ask the computer to PRINT A, and the computer prints the value ot A at this
point of the program execution.

By continuing in this fashion, you could eventually track what is causing the problem and,
after correcting the problem, delete the STOP commands from your program

225

39 I Bugs

226

For long Programs ...
(MEM)
Clear memory and type:

PR I NT ME M (ENTER l

The computer shows how much memory is currently available for BASIC programming. If
you do this right after you turn on the computer, BASIC will print:

24872

OK

When you are typing in a long program, you may want to PRINT MEM from time to time to
make sure that the computer is not running out of memory. It the program is a little on the
large side, you can save memory by omitting extra spaces in your program. You can omit
spaces before and after punctuation marks. operators. and BASIC words.

Tracing Bugs
(The TRON and TROFF Commands)
I he TRON/TROJ".'.F command lets you trace prograrrI execution to see where a bug Is occurring.
Its syntax is:

TRON or TROFF
Turns the program tracer on or off.

As an example of using this command. trace the execution of the Lines program. Type:

TRON CENTER)

Then, run the program:

5 PC LS
10 PMODE 3,1
20 SCREEN 1, 1
30 LINE(0,0)-(255,191), PSET

The computer displays:

[5] [10] (20] [30]

OK

This tells you that the computer executed Line 5. 10. 20. and 30, in that order.

To turn off the tracer, type:

TROFF (E-NTEFil

39 I Bugs

Trapping Bugs
(The ON ERR GOTO Command)
No matter how smoothly your program runs, it is incomplete if it doesn't anticipate operator
errors. ON ERR GOTO is a command that lets you anticipate and "trap" an error-before
it causes your program to crash.

The syntax of ON ERR GOTO is:

o N ERR Go To line number Goes to line number if an error occurs during program
execution.

As an example of using ON ERR GOTO, assume you have written this program:

10 PRINT "THIS PROGRAM DIVIDES X BY Y":PRINT
20 INPUT "INPUT A NUMBER ASX"; X
30 INPUT "INPUT A NUMBER AS Y"; Y
40 ANS=X/Y
50 PRINT ANS
60 GOTO 10

This program works like a dream, but only if the user knows that the computer can't divide
a number by 0. If the user types 0 CENmJ, or simply rFNTER\ the program ends and the
user is confronted with this message:

/0 ERROR IN 40.

To trap this error, you could add these lines to the program

5 ON ERR GOTO 100
100 REM ERROR HANDLING ROUTINE
110 PRINT "THE COMPUTER CAN'T DIVIDE A NUMBER BY 0"
120 PRINT "PLEASE TRY AGAIN"
130 GOTO 20

Now, when the user enters 0 m or (ENTER!, these messages appear:

THE COMPUTER CAN'T DIVIDE A NUMBER BY 0
PLEASE TRY AGAIN
INPUT A NUMBER AS Y?

Trapping the Right Bug
(The ERNO Function)
When using an error-trapping routine, be sure you are trapping the right error. For example,
assume that Line 50 has a Syntax Error (the word PRINT misspelled):

50 PIRNT ANS

When the computer executes Line 50, it goes to the same error-trapping routine. This time,
it does not go to the error-trapping routine because of a Division by O Error. It goes to the
routine because of a Syntax Error.

To anticipate this kind of problem, you can use the ERNO function. Its syntax is:

ER No Returns an error number that corresponds to the error that occurred.

227

:39 I Bugs

228

ERNO returns an error number, rather than an error message. You can find out the error
number that corresponds to each BASIC error message by referring to "BASIC Error
Messages'' in the back of this book.

Using ERNO, you can change the error-trapping routine in this way:

100 REM ERROR HANDLING ROUTINE
11/JS IF ERNO<> 10 THEN PRINT "FATAL ERROR": END
110 PRINT "THE COMPUTER CAN'T DIVIDE A NUMBER BY 0"
120 PRINT "PLEASE TRY AGAIN"
130 GOTO 20

Now, if any error occurs other than Error 10 (Division by O Error), the program prints "FATAL
ERROR" and ends.

Returning to the Right Trap
(The ERLIN Function)
In addition to being sure you trap the rigt1t error, you need to be sure that, after you trap the
error, you return to the right place in the program.

For example, assume a program includes two lines-Lines 20 and 70-where a Division by
0 Error could occur.

To determine which of these lines causes an error, BASIC has an ERLIN function. Its syntax is:

ERL IN Returns the line number where the error occurred.

Using ERLIN, you can change the error-trapping routine in this way:

100 REM ERROR HANDLING ROUTINE
1 1/J 5 I F ERNO <> 1 0 THEN PR INT "FAT AL ERROR" : EN 0
110 PRINT "THE COMPUTER CAN'T DIVIDE A NUMBER BY 0"
121/J PRINT "PLEASE TRY AGAIN"
130 IF ERLIN = 20 THEN 20
140 IF ERLIN = 71/J THEN 70

Trapping a Break
(The ON BRK GOTO Command)
Closely related to the ON ERR GOTO command is the ON BRK GOTO command. This
command goes to a break-trapping routine if the operator presses the (BREAK l key.

Its syntax is:

ON BRK GOTO line number Goes to line number if the 03REAl<J key is pressed
during program execution.

This is a short example of ON BRK GOTO:

11/J ONBRKGOTO1GII/J
20 PRINT "HELLO"
31/J GOTO 21/J
11/JI/J PRINT "IT'S ABOUT TIME YOU STOPPED THAT!"

39 I Bugs

This program prints HELL o over and over again until the operator presses the (BREAK l key.
Then, instead of displaying the BREAK IN 2 D or BREAK IN 3 D message, the computer
displays

IT'S ABOUT TIME YOU STOPPED THAT!

Break-trapping does not have a counterpart to the ERNO and ERLIN functions, but it is still
a better alternative than having the program simply stop when the operator presses (BREAK l.

Learned in Chapter 39

COMMANDS

STOP
CONT
MEM

TRON/TROFF
ON ERR GOTO
ON BRK GOTO

FUNCTIONS

ERLIN
ERNO

229

40 I MACHINE-LANGUAGE
SUBROUTINES

This chapter assumes you know how to write machine language (ML) subroutines (subroutines
that contain 6809 instructions). It shows how to call an ML subroutine from a BASIC program.

How to Call an ML Subroutine
CLEAR,CLOADM,PEEK,POKE,DEFUSR,andUSR

{Working With Machine Language)
To call an ML subroutine from a BASIC program, you need to follow six steps.

1. Assemble the ML Subroutine into Object Code

You can do this yourself, by looking up the code for each instruction, or by using an
assembler such as EDTASM or Disk EDTASM.

231

40 I Machine-Language Subroutines

232

Step 2. Reserve Memory for the ML Subroutine

You can do this using the second parameter of the CLEAR command. The syntax of CLEAR is

c LE AR n 1, n2 Clears n 1 bytes of string space and sets n2 as the highest address
that BASIC can use. (By setting n2 as the highest address that BASIC can use,
you are reserving this area for your ML subroutine.)

For example, this command reserves an area of memory from Addresses 21000 to the top
of memory:

5 CLEAR 25, 21000

BASIC cannot overwrite this area of memory

3. Store the ML Subroutine in Memory

You can do this by loading it from tape. with the CLOADM command, or by poking 1t into
memory, with the POKE command.

The syntax for CLOADM is

c LOAD M filename, offset address loads an ML program or subroutine from
cassette tape.

filename is the ML program or subroutine.
offset address is optional; it specifies an offset to add to the ML program or

subroutine's loading address

The syntax for POKE is:

POKE address, n stores a number In memory

17

address
The number you want to store (0-&HFF).
The memory address where you want to store the number (0-&HFFFF).

4. Tell BASIC Where the ML Subroutine Is

You can do this using the DEFUSR command. The syntax for DEFUSR is:

DEF us Rn = address tells where, in memory, an ML subroutine starts

n is the number of the ML subroutine (0-9). address is the first address in memory
where the ML subroutine is stored

For example, this command tells BASIC that a routine is stored at address 21000:

10 DEFUSR1 21000

Notice that we have labeled the routine as subroutine 1

40 I Machine-Language Subroutines

5. Call the ML Subroutine

You can do this with the USA command or the EXEC command. The syntax of USA is:

dummy variable= USAn(value) calls an ML subroutine

n is the number of the ML subroutine (0-9).
value is a value you want to pass to the ML subroutine.
dummy variable is a variable you can use to store the data returned by USR

For example, this command calls the routine at 21000 labeled as subroutine 1 above

110 A:=LJSR1(0)

The EXEC command is simpler than the USR command. Use EXEC when you do not need
to pass variables to and from the machine-language program. EXEC jumps to the program,
and when it is done, returns. The syntax for EXEC is:

EXEC (address)
Transfers control to a machine-language program at address. If address is omitted,
control is transferred to the address set by the last CLOADM.

An example of EXEC is:

EXEC 21000

6. Return from the ML Subroutine

You can do this by using the ATS instruction. This causes the ML subroutine to return without
passing any values to USA's dummy vanable.

Using Stack Space
An ML subroutine, called by USA, that requires more than 30 bytes of stack storage must
provide its own stack area. Save BASIC s stack pointer upon entry to the USR function, setting
up a new stack pointer and restoring BASICs stack pointer prior to returning to BASIC. The
values of the A, B, X, and CC registers need not be preserved by USA.

233

40 I Machine-Language Subroutines

234

Reading and Saving Memory
Using PEEK and CSA VEM
BASIC makes it easy to look at your computer's memory, and save its contents. PEEK lets
you look inside your comr,uter, and CSAVEM lets you save machine-language programs on
tape. Their syntaxes are:

PE E K (memory locatton)
Returns the contents of a memory location (0-65535 decimal, or 0-&HFFFF
hexadecimal).

An example of PEEK is:

A:::: PEEK(&H2155)

CS AV EM "filename",!,h,e
Saves machine-language program filename on cassette.

filename Name of machine language program being saved. Name can have
as many as 8 characters.

/ Lowest address of machine-language program.
h Highest address of machine-language program.
e Exec address of machine-language program.

An example of CSAVEM is

CSAVEM "GRAPHICS",&HD000,&HDFE0,&HD003

Helpful BASIC Functions
(The &Hand &O Operators; the HEX$,
LPEEK, and LPOKE Functions)
BASIC offers several functions that are helpful when dealing with ML subroutines.

The first are the "&H" operator. which permits using hexadecimal notation and the "&O"
operator which permits using octal notation. For example. this command stores the hexadecimal
number 20 into Memory Address 21000:

POKE 2111)00, &H2D

This command would store the octal number 377 into Memory Address 21000:

POKE 21000, &0377

The second is HEX$, which converts a decimal number into a hexadecimal string. The syntax
of HEX$ Is

HE x $(n) returns the hexadecimal value of n as a string.

For example, this command stores "10," the hexadecimal value of 16, into A$:

A$=HEX$(16)

40 I Machine-Language Subroutines

If you have been using PEEK and POKE, you may have wondered how you can access all
the memory in your Color Computer 3. PEEK and POKE can only access 0-&HFFFF. Your
computer has a good deal more memory than that, and two new functions to let you access
it. These new functions are LPEEK and LPOKE. Their syntaxes are

LP EEK (Virtual memory location)
Returns the contents of a virtual memory location (0-524287 decimal or 0-&H7FFFF
hexadecimal).

LP o KE virtual memory location, value
Stores a value (0-255) in a virtual memory location (0-524287 decimal or 0-&H7FFFF
hexadecimal).

As you can see. virtual memory addresses have a much wider range than those used for
CLOADM. CSAVEM, PEEK. POKE, DEF USR, and EXEC. The memory map in Section? lists
many important v;rtual addresses in your computer. You can access all of them with LPEEK
and LPOKE. To use 0-&HSFFFF, you must have 512K of memory in your computer.

The relationship between regular memory addresses, and virtual memory addresses is easy
to understand. Regular memory addresses 0-&HFFFF correspond to virtual memory
addresses &H70000-&H7FFFF. For example, the regular memory address &H128F is the
same as the virtual memory address &H7128F.

Here is an example of LPEEK

PRINT LPEEK(&H60000)

Here 1s an example of LPOKE:

LPOKE &H60000,&H255

Learned in Chapter 40

COMMANDS

CLEAR
OEFUSR

USR
POKE

LPOKE

FUNCTIONS

PEEK
LPEEK
HEX$

OPERATOR

&H
&O

235

PART 7 / ODDS AND ENDS

237

SUGGESTED ANSWERS TO
DO-IT-YOURSELF PROGRAMS

Do-It-Yourself Program 4-4
Sounding tones from bottom of range to top and back to bottom:

10 FOR X=1 TO 255
20 SOUNDX,1
30 NEXT X
40 FOR X=255 TO 1 STEP -1
50 SOUNDX,1
60 NEXT X

Do-It-Yourself Program 5-1
10 PRINT "HOW MANY SECONDS"
20 INPUTS
30 FOR Z = 1 TO 460 * S
40 NEXT Z
50 PRINTS "SECONDS ARE UPI 11 11

60 FOR T = 120 TO 180
70 SOUND T,1
80 NEXT T
90 FORT= 150 TO 140 STEP -1
100 SOUND T,1
110 NEXT T
120 GOTO 50

Do-It-Yourself Program 5-2
Lines added to clock program:

92 FOR T=200 TO 210 STEP 5
94 SOUND T,1
95 NEXT T
97 FOR T=210 TO 200 STEP -5

98 SOUND T,1

99 NEXT T

Do-It-Yourself Program 5-3
1 0 FOR C=0 TO 8
20 C LS C
30 FOR X = 1 TO 460
40 NEXT X
50 NEXT C

239

vUi:J!:Jt::;:::,u::;;u n.11.::,vv,:;;-1.::, (V LJV_ll_l VU/vt::/1 I 1v~1a111.::,

240

Do-It-Yourself Program 9-1
10 T = RNDC255)
14 C = RND(8)
16 CLSC
20 SOUND T,1
30 GOTO 1 0

Do-It-Yourself Program 9-2
10 CLS
20 A=RNDC6)
30 B=RND(6)
40 R=A+B
50 PRINT@ 200, A
60 PRINT@ 214, B
7fJ PRINT@ 394, "YOU ROLLED A" R
8Ql IF R=2 THEN 600
90 IF R=3 THEN 600
100 IF R=12 THEN 600
110 IFR=7THEN500
120 IF R; 11 THEN 500
130 FOR X = 1 TO 800
140 NEXT X
150 CLS
160 PRINT@ 195, "ROLL ANOTHER" R "ANO YOU WIN"
170 PRINT@ 262, "ROLL A 7 AND YOU LOSE"
180 PRINT@ 420, "PRESS <ENTER> WHEN READY"
185 PRINT &l 456, "FOR YOUR NEXT ROLL"
190 IPUT A$
200 N=RND(6)
210 Y=RN0(6)
220 Z=X+Y
225 CLS
230 PRINT&l200,X
240 PRINT@214,Y
250 PRINT@ 394, "YOU ROLLED A" Z
260 IF Z=R THEN 500
270 IF 2=7 THEN 600
280 GOTO 180
500 FOR X=1 TO 1000
510 NEXT X
515 CLS
520 PRINT iii 230, "YOU'RE THE WINNER"
530 PRINT &l 294, "CONGRATULATIONS 1 1 1 11

540 GOTO 630
600 FOR X =1 T01000
610 NEXT X
615 CLS
620 PRINT@ 264, "SORRY, YOU LOSE"
630 PRINT iii 458, "GAMES OVER"

Sugguested Answers to Do-It-Yourself Programs

Do-It-Yourself Program 10-1
5 CLEAR 500
10 DATA TACITURN, HABITUALLY UNTALKATIVE
20 DATA LOQUACIOUS, VERY TALKATIVE
30 DATA voe I FEROUS, LOUD AND VEHEMENT
40 DATA TERSE, CONCISE
50 DATA EFFUSIVE, DEMONSTRATIVE OR GUSHY
60 N = RND(10)
65 IF INT(N/2) = N/2 THEN N = N - 1

70 FOR X = 1 TON
80 READ A$
90 NEXT X
110 READ B$

120 PRINT "WHAT WORD MEANS:" B$
130 RESTORE
140 INPUTR$
150 IF R$ = A$ THEN 190

160 PRINT"WRONG"
170 PRINT "THE CORRECT WORD IS:" A$
180 GOTO 60
190 PRINT "CORRECT"
200 GOTO 60

Do-It-Yourself Program 12-1
10 A$= "CHANGE A SENTENCE."
20 B$="IT'SEASYTO"
30 C$=B$+""+A$
40 PRINT C$

Do-It-Yourself Challenger Program (Chap. 12)
10 PRINT "TYPE A SENTENCE:"
15 INPUTS$
20 PRINT "TYPE A PHRASE TO DELETE"
23 INPUT 0$
25 L=LEN(D$)

30 PRINT "TYPE A REPLACEMENT PHRASE"
35 INPUT R$
40 FOR X=1 TO LEN (S$)
50 IF MIO$(S$,X,U=D$ THEN 100
60 NEXT X
70 PRINT D$ "-- IS NOT IN YOUR SENTENCE"
80 GOTO 20
100 E = X-1+LEN(D$)
110 N$=LEFT$(S$,X-1) + R$ + RIGHT$(S$,LEN(S$) - E)

120 PRINT "NEW SENTENCE IS:"
130 PRINT NS$

241

Sugggested Answers to Do-It-Yourself Programs

Do-It-Yourself Program 16-1
5 CLS
10 FOR N=12 TO 1 STEP -1
15 PRINT "NOTE";N
20 PLAY STR$(N)
25 FOR I=1 TO 500: NEXT I
30 NEXT N

Do-It-Yourself Program 16-2
Change the following lines:

100 0 A$= "T5;C;E;F;L1 ;G;P4;L4;C;E;F;L1 ;G"
105 B$ = "P4;L4;C;E;F;L2;G;E;C;E;L1;D"
110 C$ = "P4;L4;D+;L8;E;G;E;P8;L4;C;L8;D;D+"
115 0$ = "L4;E;C;LZ;03;C;L8;03;D;L8;02;B-"
120 E$ = "G;E;L4;G;L1;F;P4;L8;G;F;E;F"
125 F$ = "L2;G;E;L4;C;L8;D;O+;E;G;L4;A;L1;03;C"
130 X$ = "XA$;XB$;XC$;XD$;XE$;XF$;"

Add Line 140

140 PLAYX$

Do-It-Yourself Program 20-2
5 PMODE1,1
10 PCLS
20 SCREEN 1, 1
30 X=RN0(256)-1
40 Y=RND(192)-1
50 C=RND(9)-1
60 PSET(X,Y,C)
70 GOTO 30

Do-It-Yourself Program 21-1
5 PMODE1,1
10 PCLS
20 SCREEN 1, 1
25 LINE (0,0)-(255,191), PSET
30 LINE (0,191)-(255,0), PSET
35 LINE (0,0)-(255,191), PSET,B
40 GOTO 40

242

Suggested Answers to Do-It-Yourself Programs

Do-It-Yourself Program 21-2
5 PMODE1,1

10 PCLS

20 SCREEN1,1
30 LINE (72,168)-(200,72), PSET,B 'FRAME
40 LINE (72,72)-(136,36), PSET 'ROOF
45 LINE (200, 72)-(136,36), PSET 'ROOF

50 LINE (120,168)-(152,100), PSET,B 'DOOR

55 LINE (152,60)-(168,36), PSET, BF 'CHIMNEY

60 LINE (165,128)-(191,100), PSET, 8 'WINDOW

65 LINE (178,128)-(178,100), PSET 'WINDOW PART

70 LINE (165,114)-(191,114), PSET 'WINDOW PART
75 LINE (85,128)-(111,100), PSET, 8 'WINDOW

80 LINE (85,114)-(111,114), PSET 'WINDOW PART
85 LINE (98,100)-(98,128), PSET 'WINDOW PART

90 GOTO 90

Do-It-Yourself Program 21-3
5 PMODE1,1

10 PCLS
20 SCREEN1,1
30 Y=0

40 FOR X=0 TO 200 STEP 10
50 OY=Y
60 Y=30-0Y

70 LINE (X,100-Y)-(X+10,100-0Y), PSET

80 NEXT

90 GOTO 90

Do-It-Yourself Program 22-1
1 Y =-1

5 CLS
10 PRINT@ 193, "00 YOU WANT TO SEE A SQUARE?"

20 FOR X=1 TO 1000: NEXT X

30 PMODE1,1

35 PCLS

40 SCREEN 1, Y+1
60 LINE (75,150)-(150,75), PSET, 8

70 FOR X=1 TO 1000: NEXT X
75 Y=-Y

80 GOTO 5

243

Suggested Answers to Do-It-Yourself Programs

Do-It-Yourself Program 24-1
2 WIDTH32

5 PMODE 4,1

8 PALETTE 11, Color code

9 PALETTE HI, 0

1 0 COLOR 7 ,6

20 SCREEN1,1

25 LINE (0 , 0) - (2 5 5 , 1 91) , PSET

30 LINE(0,191)-(255,0), PSET

40 GOTO 40

Do-It-Yourself Program 25-2
Make the following

22 PCOPY 4 TO 3

32 PCOPY 3 TO 2

42 PCOPY 2 TO 1

Delete Lines 11. 21. aricJ :J 1

Do-It-Yourself Program 25-3
20 PMODE0,1

30 SCREEN1,1:PCLS

40 LINE (RND(255), RND(191))-(RND(255), RND(191)), PSET

50 PMODE0,2

55 SCREEN1,1:PCLS

60 LINE (RND(255), RND(191))-(RND(255), RND(191)), PSET

70 PMODE 0,3

75 SCREEN1,1:PCLS

80 LINE (RND)(255), RND(191))-(RND(255), RND(191)), PSET

90 PMODE0,4

95 SCREEN1,1:PCLS

96 PCLS

100 LINE (RND(255), RND(191))-(RND(255), RND(191)), PSET

110 FORZ=1TO4

120 PMODE 0,Z:SCREEN 1,1

130 FOR R = 1 TO 20: NEXT R: NEXT Z

140 GOTO 110

244

Suggested Answers to Do-It-Yourself Programs

Do-It-Yourself Program 26-1
10 PMODE 4,1
20 PCLS
30 SCREEN 1,0
40 FOR RADIUS= 1 TO 100 STEP 10
50 CIRCLE (128,96), RADIUS
60 NEXT RADIUS
70 GOTO 70

Do-It-Yourself Program 26-3
5 PMODE4,1
10 PCLS
20 SCREEN 1,0
30 CIRCLE (200,40),30,,1,.13,.63
40 CIRCLE (230,10),52,,1,.29,.48
50 GOTO 50

Do-It-Yourself Program 26-4
5 PMODE1,1
10 SCREEN1,0
15 PCLS3
20 COLOR1,0
25 CIRCLE (200,40),30,,1,.13,.63 'MOON
30 CIRCLE (230,10),52,,1,.29,.48 'MOON
35 LINE (100,185)-(180,125), PSET,B 'HOUSE FRAME
40 LINE -(140,85), PSET 'ROOF
45 LINE -(100,125), PSET 'ROOF
55 LINE (110,160)-(125,130),PSET,B 'WINDOW
60 LINE (155,16tl)-(17tl,130), PSET,B 'WINDOW
70 LINE (13tl,13tl)-(149,185), PSET,B 'DOOR
75 PSET (134,157,1> 'DOOR KNOB
80 LINE (16tl,1tl5)-(16tl,90), PSET 'CHIMNEY
85 LINE -(175,90), PSET 'CHIMNEY
90 LINE -(175,115),PSET 'CHIMNEY
100 'SMOKE STARTS HERE
105 X=167:Y=89 'CIRCLE CENTERPOINT
110 SP=0: EP=0 'CIRCLE START AND END POINT
115 FOR R=1 TO 50 STEP .05 'CIRCLE RADIUS
120 EP=EP+.02: IF EP>1 THEN EP=0
125 CIRCLE (X+R, Y-R),R,4,1,SP,EP 'SMOKE
130 NEXT R
200 GOTO 200

Do-It-Yourself Program 27-1
Delete Line 40 and add Line 65:

65 PAINT (150,100),8,8

245

Suggested Answers to Do-It-Yourself Programs

246

Do-It-Yourself Program 27-3
5 PMODE1,1
10 PCLS
15 SCREEN1,0
20 PCLS 3
25 COLOR1,0
30 CIRCLE (200,30),15
35 PAINT (200,30),2,1
40 LINE (100,185)-(180,125),PSET,B
45 LINE-(140,90),PSET
50 LINE-(100,125),PSET
55 PAINT (135,115),4,1
60 LINE (110,160)-(125,130), PSET,B
65 LINE (155,160)-(170,130), PSET,B
70 LINE (134,157)-(41,185), PSET,B
75 PAINT (120,180),0,1
80 LINE (130,130)-(149,185), PSET,B
85 LINE (101,135)-(41,185), PSET,B
90 LINE (91,140)-(51,185), PSET,B
95 PAINT (55,138),0,1
100 PAINT (89,183),4,1
105 FOR X=1 TO 500: NEXT X
110 PAINT (89,183),2,1
115 FOR X=1 TO 500: NEXT X
120 PAINT (89,155),4,1
1 40 GOTO 11 0

Do-It-Yourself Program 28-1
5 PMODE4,1
10 PCLS
20 SCREEN 1,0
30 DRAW "BM68,116;E20;BE20;E20; F20;BF20;F20;L40;BL40;

L40;BU40;R40;BR40;R40;G20;BG20;G20;H20;BH20;H20;
BM128,96;NU40;ND40;NE20;NF20;NG20;NH20;NL40;R40"

40 GOTO 40

The star you created probably isn't as fancy as this one because you haven't been introduced
to B or N yet. But don't worry; you will be before the end of the chapter.

Do-It-Yourself Program 28-2
5 PMODE4,1
10 PCLS
20 SCREEN 1, 1
25 DRAW "BM40, 80; U40; R40; D40; L40"
30 DRAW "BM+20, 20; U40; R40; D40; L40"
40 LINE (60,100)-(40,80), PSET
50 LINE (60,60)-(40,40), PSET
60 LINE (100,60)-80,40), PSET
70 LINE (100,100)-(80,80), PSET
80 GOTO 80

Suggested Answers to Do-It-Yourself Programs

Do-It-Yourself Program 28-3
5 PMODE4,1

10 PC LS
20 SCREEN 1, 1
25 DRAW "BM50, 50L30D30R30D30 L30"
30 DRAW "BM90, 50D60R30U60"
40 DRAW "BM160, 50D60R30BU60L30D30R30"
50 GOTO 50

Do--lt .. Yourself Program 28-4
5 PMODE4,1
10 PCLS
20 SCREEN 1, 0
30 DRAW "BM98, 96; NU80; NE56; NR80; NF56; ND80; NG56; N L80; NH56"
40 CIRCLE (98,96),80,1,1,.125,1
50 CIRCLE (135,110),80,1,1,1,.125
60 LINE (135,110)-(190,167), PSET
70 LINE (135,110)-(213,110), PSET

80 GOTO 80

Do-It-Yourself Program 28-5
1 CLEAR 2500
5 DIM AZ$(25)

6 FOR LE=0 TO 25
10 READ AZ$(LE)

15 NEXT LE
20 NC$="BR4BU7" 'NEXT CHARACTER
25 NL$="8D4" 'NEXT LINE
30 BS$="BL9" 'BACKSPACE
35 HM$="BM5,10" 'HOME POSITION
100 CW=6: CH=8 'SIZE OF CELL
110 R1 =7: R24=191 'ROW POSIT ION
120 C1=8: C42=247 'COLUMN POSITION
125 CC=1: CL=1 'CURRENT ROW/COL
200 PMODE 4, 1

210 PCLS
220 SCREEN 1, 0
230 DRAW HM$
250 A$=INKEY$: IF A$="" THEN 250
260 IF "A"> A$ OR "Z" < A$ THEN 250
262 CC=CC+1
265 IF CC>27 THEN DRAW NL$: FOR 1=1 TO 27:

DRAW BS$: NEXT I:CC=1: GOTO 270
269 DRAW NC$
270 DRAW AZ$ (ASC(A$)-65)

290 GOTO 250

247

Suggested Answers to Do-It-Yourself Programs

1000 'A
1010 DATA BD1D6U4NRSU2E1R3F1D6
1020 'B
1030 DATA ND7R4F1 D1 G1 NL4F1 D2G1 NL4BR1
1040 'C
1050 DATA BD1 DS F1 R3E1 U1 BU3U1 H1 L3G1 BD6BR5
1060 'D
1070 DATA D7R4E1 U5H1 L48D7BR5
1 080 'E
1090 DATA NRSD3NR4D4R5
1100 'F
1110 DATA NRSD3NR4D4BR5
1120 'G
1130 DATA BD1D5F1R3E1U2NL2BU2U1H1L3G1BD6BR5
1140 'H
1150 DATA D7U4R5NU3D4
1160 ' I
1170 DATA R4L2D7L2R4BR1
1180 'J
1190 DATA BD5D1F1R3E1U6BD7
1200 'K
1210 DATA D7U4R3E2NU1 G2F2D2
1220 'L
1230 DATA D7R5
1240 'M
1250 DATA ND7F2ND7E2D7BR1
1260 'N
1270 DATA ND7D1F5ND1U6BD7
1280 'O
1290 DATA BD1D5F1R3E1U5H1L3G1BD6BR5
1300 'P
1310 DATA ND7R4F1 D2G1 L4BD3BR5
1320 'Q
1330 DATA BD1 DS F1 R3E1 U5H1L3G1 D48R3F2
1340 'R
1350 DATA ND7R4F1D1G1NL4F1D3
1360 'S
1370 DATA BD1D1F1R3F1D2G1L3H1BU5E1R3F1BD6
1380 'T
1390 DATA R4L2D7BR3
1 400 I u
1410 DATA D6F1R3E1U6BD7
1420 'V
1430 DATA D5 F2E2USBD7BR1
1 440 I W

1450 DATA D7E2NU5 F2U78D7BR1
1 460 'X
1470 DATA D1 F 5 D1 B L5U1 E5U1 BD7
1480 'Y
1490 DATA D2F2ND3E2U28D7BR1
1500 'Z
1510 DATA RSD165D1 RS

248

Suggested Answers to Do-It-Yourself Programs

Do-It-Yourself Program 28-6
5 PMODE 3,1
10 PCLS
15 SCREEN1,0
20 DRAW "BM50,170;U80;NG30;E80;F80;NF30;D80;U70;

L50; U60; L60; D60; L50"
25 LINE (50,170)-(170,170), PSET
30 LINE (160,170)-(160,100), PSET
31 LINE (100,170)-(100,100), PSET
32 LINE -(160,100), PSET
33 LINE (110,145)-(120,145), PSET
35 FOR X=1 TO 500: NEXT X
40 LINE (100,170)-(160,170), PRESET
45 LINE (120,180)-(120,110), PSET
50 LINE (160,100)-(120,110), PSET
55 LINE (160,170)-(120,180), PSET
56 LINE (110,145)-(120,145), PRESET

59 FOR X=1 TO 300: NEXT X
60 LINE (120,180)-(120,110), PRESET
65 LINE (160,100)-(120,110), PRESET
70 LINE (160,170)-(120,180), PRESET
75 DRAW "BM110,170;BU70;BR50;G25;D70;E25;BU35;BG15;G5"
80 CIRCLE (130,125),10,,1,.135,.9
85 DRAW "BM130,130;D15;D15;G10;E10;U15;L10"
90 LINE (120,145)-(120,135), PSET
91 FOR X=1 TO 60: NEXT X
95 LINE (120,145)-(120,135), PRESET
96 FOR X=1 TO 120: NEXT X
100 LINE (120,145)-(110,145), PSET
101 FOR X=1 TO 60: NEXT X
110 LINE (120,145)-(120,135), PSET
120 FOR X=1 TO 120: NEXT X
121 CIRCLE (130,125),10,1
122 DRAW BM130,130;C1;D30;G10;E10;U15;L10"
125 DR AW "8 M 11 0, 1 7 0; BU 7 0; BR 5 0; C 1 ; G 2 5; D 7 0; E 2 5; B U3 5; 8 G 1 5; G 5"
130 COLOR4,1
135 LINE (120,180)-(120,110), PSET
140 LINE (160,100)-(120,110), PSET
141 LINE (120,145)-(110,145), PRESET
145 LINE (160,170)-(120,180), PSET
146 FORX=1TO300:NEXTX
150 LINE (120,180)-(120,110), PRESET
155 LINE (160,100)-(120,110), PRESET
160 LINE (120,180)-(160,170), PRESET
170 LINE (100,170)-(160,170), PSET
175 GOTO 20

249

Suggested Answers to Do-It-Yourself Programs

250

Do-It-Yourself Program 29-1
5 PC LEAR 4

10 PMODE 4,1

15 PCLS

20 SCREEN 1, 1

25 DIM V(35,35)

30 X=10: Y=10

35 DRAW "BM10,10;S2;H10;R15;F10;R20;F10;G10;L20;G10;

L15;E10;U20;D4;NL8'D4'NL12'D4NL16;D4;NL12;D4;NL8"

40 GET (X-X,Y-Y)-(X*3.5,Y*3.5),V,G

45 A$=INKEY$: IF A$="" THEN 45 'PRESS ANY KEY TO START

50 PCLS

55 FOR A=10 TO 200 STEP 5
60 PUT (X+A,Y)-(X+A+35,Y+35),V,PSET

65 NEXT A

70 PCLS

75 GOTO 55

Notice that we've used the options for both GET and PUT. If you want this rocket to go faster,
delete the options and switch to Mode 3.

Do-It-Yourself Program 32-1
5 CLS: PRINT "POSITION TAPE - PRESS PLAY AND RECORD:"

7 INPUT "PRESS <ENTER> WHEN READY";R$

10 OPEN "0", #-1, "CHECKS"

15 CLS: PRINT "INPUT CHECKS - PRESS <XX> WHEN FINISHED"

20 INPUT "NUMBER:"; N$

25 IF N$ = "XX" THEN 90

30 INPUT "DATE : "; 0$

40 INPUT "PAYABLE TO:"; P$

50 INPUT "ACCOUNT:"; S$

60 INPUT "AMOUNT : $"; A
70 PRINT #-1, N$, 0$, P$, 5$, A
80 GOTO 1 5

90 CLOSE#-1

92 C LS: T=0

95 INPUT "WHICH ACCOUNT:"; 8$
100 PRINT "REWIND TAPE - PRESS PLAY"

110 INPUT "PRESS <ENTER> WHEN READY"; R$

120 OPEN "I", #-1, "CHECKS"

130 IF EOF (-1) THEN 170

140 INPUT #-1, N$, 0$, P$, 5$, A

150 IFB$=S$THENT=T+A

160 GOTO 130

170 CLOSE#-1

180 PRINT "TOTAL SPENT ON-" 8$, "IS$" T

Suggested Answers to Do-It-Yourself Programs

Do-It-Yourself Program 33-1
1e DATA33,12,42,13,15,23

2e DATA 25, 3e, 33, 27, 14, 8
30 DIM 1(12)

40 FOR X=1 TO 12
50 READ I (X)

60 NEXT X

70 INPUT"ITEMNO.";N

75 IFN>12THEN70

80 PRINT "INVENTORY FOR ITEM" N "IS" I(N)
9111 GOTO 70

Do-It-Yourself Program 33-2
5 DIM T(52)

7 DIM D(52)

1 0 FOR X=1 TO 52

20 T(X)=X

3111 NEXT X

34 CLS

36 PRINT@101," ••• DEALING THE CARDS"

40 FOR X=1 TO 52

50 C=RND(52)

6111 IF T(C)=0 THEN 50

70 D(X)=C

75 SOUND 128,1

80 T(C) = 0
100 NEXT X

11 0 C LS

120 PR I NT @ 107, "YOUR HAND"

130 PRINT@167,""

140 FOR X = 1 TO 5

150 PRINT D(X);

160 NEXT X

Do-It-Yourself Program 34-1
Lines that change items:

110 INPUT "WHICH ITEM NO. DO YOU WANT TO CHANGE"; N

115 IFN>12THEN110

120 INPUT "WHAT IS THE REPLACEMENT ITEM"; SS(N)
130 GOTO 80

The appendix has a sample program that adds and deletes items from this list.

251

Suggested Answers to Do-It- Yourself Programs

Do-It-Yourself Program 34-2
Lines that change the song lyrics:

110 PRINT
120 INPUT "WHICH LINE DO YOU WANT TO REVISE"; L
130 PRINT "TYPE THE REPLACEMENT LINE"
140 INPUT A$(L)
150 GOTO 50

Do-It-Yourself Program 34-3
1 CLEAR 1000
5 DIM A$(50)
7 C LS
10 PRINT "TYPE A PARAGRAPH"
20 PRINT "PRESS <I> WHEN FINISHED"
30 X=1
40 A$= INKEY$
50 IF A$='"' THEN 40
60 PRINT A$;
70 IFA$="/"THEN105
80 A$(X) = A$(X) + A$
90 IF A$::"." OR A$= "7" OR A$="'" THEN X = X+1
100 GOTO 40
105 PRINT: PRINT
110 INPUT 11 (1) PRINT OR (2) REVISE"; R
120 CLS
130 ON R GO SUB 1000, 2000
140 GOT0105
1000 REM PRINT PARAGRAPH
1010 FOR Y = 1 TO X-1
1020 PRINTA$(Y);
1030 NEXT Y
1040 RETURN
2000 REM REVISE PARAGRAPH
2010 FOR Y=1 TO X-1
2020 PRINTY 11 - 11 AS(Y)
2030 NEXT Y
2040 INPUT "SENTENCE NUMBER TO REVISE"; S
2045 IFS> X-1 OR S<1 THEN 2040
2050 PRINT A$(S)
2060 PRINT "TYPE PHRASE TO DELETE"
2070 INPUT D$
2080 L=LEN (0$)
2090 PRINT "TYPE A REPLACEMENT PHRASE"
2100 INPUT R$
2110 FOR Z = 1 TO LEN(A$(S})
2120 IF MID$(A$(S),Z,L) = 0$ THEN 2160
2130 NEXT Z
2140 PRINT 0$ 11 - IS NOT IN YOUR SENTENCE"
2150 GOTO 2060
2160 E = Z-1+LEN(D$)
2170 A$(S) = LEFT$(A$(S) ,Z-1) + R$ + RIGHT$ (A$(S), LEN(A$(S))-E)
2180 RETURN

252

Suggested Answers to Do-It-Yourself Programs

Do-It-Yourself Program 34-4
Change this line to print on the printer:

150 PRINT#-2,A$(Y);

Do-It-Yourself Program 35-1
10 DIM S$(4), N$(13), T(4,13)

20 DATA SPADES, HEARTS, DIAMONDS, CLUBS

30 FORX=1TO4
40 READ S$(X)

50 NEXT X

60 DATA ACE, 2, 3, 4, 5, 6, 7, 8, 9, 10, JACK, QUEEN, KING
70 FOR X=1 TO 13
80 READ N$(X)

90 NEXT X

100 FOR S=1 TO 4
110 FORN=1TO13
120 TCS,N)=(S-1)*13+N

130 NEXTN,S

140 FOR X=1 TO 52
150 S=RND(4): N=RND(13)

160 IFT(S,N)=0THEN150
170 T(S,N)=0

180 PRINT NS<N) 11 - 11 S$(S),

190 NEXTX

Do-It-Yourself Program 36-1
5 CLS
10 DEF FNC (X) = X"3

20 INPUT "WHAT NUMBER DO YOU WANT TO CUBE";X
30 X=FNC(X)

40 PRINT X
50 FOR A ::: 1 TO 75

55 NEXT A

60 GOTO 20

253

Suggested Answers to Do-It-Yourself Programs

254

Do-It-Yourself Program 37-1
5 C LS

1 0 X$ = STRING$(30,"-")

20 FOR X = 64 TO 352 STEP 64
30 PRINT@X,X$

40 PRINT@ 97, "BI LL"

41 PRINT@ 161, "SUE"

42 PRINT@ 225, "JON"

43 PRINT@ 289, "MARY"

50 PRINT@ 38, "MATH"

51 PRINT@ 45, "SPELL"

52 PRINT@ 53, "READ"

60 PRINT@ 103, "X"

61 PRINT@ 175, "X"

62 PRINT@ 231, "X"

63 PRINT@ 311, "X"

70 NEXT X

80 GOTO 80

Do-It-Yourself Program 37-2
5 CLS
10 X$ = "ABC DEB"

20 Y$ = "B"
30 PRINT INSTR (X$,Y$); INSTR(4,X$,Y$)

Do-It-Yourself Program 37-3
1 5 X=1

20 XS= "JAMES SMITH,6550HARISON,DALLASTX•75002:SUE

SIM,RT3,GRAVIOSMO•65084: LYDIA LONG,3445SMITHST,
ASBURYNJ•32004:BOB STRONG,BOX60,EDMONTONALBERTACA:

TIMMY DUNTON, PIERMONTMO•65078"
50 P = INSTR(X,X$,A$): PRINT P

60 IF P<> 0 THEN X=P+1: GOTO 50

Suggested Answers to Do-It-Yourself Programs

Do-It-Yourself Program 37-4
10 DIMTBL$(26)
20 FOR I=0 TO 25
30 READ TBL$(I): NEXT I
40 PRINT "ENTER OLD-STYLE PHONE NUMBER"
50 INPUT N$
61/J IF N$="" THEN 41/J
70 FOR 1=1 TO LEN(N$)
80 C$=MID$(N$,I,1)
90 IF C$<"A" OR C$>"Z" THEN 121/J
101/J C$=TBL$(ASC(C$)-65)
110 MID$(N$,I)-C$
120 NEXT I
130 PRINT "NEW-STYLE= ";N$
140 REMABCOEF
150 DATA "2","2","2","3","3","3"
160 REMGHIJKL
170 DATA "4","4","4","5","5","5"
180 REMMNOPQR
190 DATA "6","6","6","7","7","7"
200 REMSTUVWX
210 DATA 11 7", "8", 11 8 11 , "8", "9", "9"
220 REMYZ
230 DATA "9", "9"

Do-It-Yourself Program 38-1
10 A$="$$##,######.## DOLLARS"

Do-It-Yourself Program 38-2
5 CLS
11/J INPUT "INCOME"; I
15 INPUT "EXPENSES"; E
21/J N=I-E 'NET GAIN OR LOSS
25 A$ = "$$####. ##"
30 B$ = "$$####. ##"
35 C$ = "+$$####. ##"
40 CLS: PRINT@ 33, "MONTHLY ECONOMIC STATUS REPORT"
45 PRINT@ 96, STRING$ (32,"-")
50 PRINT@ 160, "INCOME"
55 PRINT@ 256, "EXPENSES"
60 PRINT@ 352, "TOTAL(+) OR(-)"
65 PRINT@ 340, STRING$(10,"-")
70 PRINT@ 180, USING A$; I
75 PRINT@ 276, USING B$; E
80 PRINT@371,USINGC$;N
90 GOTO 90

Try modifying this program to keep track of your electricity bills and to store the information
on a yearly basis.

Do-It-Yourself Program 38-3
5 CLS
10 PRINT "THIS" TAB(POS(0)+4) "IS";
20 PRINT TAB(POS(0)+4)"EVENLY" TAB(POS(0)+4) "SPACED"

255

SAMPLE PROGRAMS

Sample Program #1
Type this program and save it on cassette, but don't open it (or run it) until Christmas1

5 CLS
10 PRINT@ 64, STRING$ (32,"*")
15 PRINT@ 352, STRING$ (32,"*")
20 PRINT@ 199, "JOY TO THE WORLD"
25 FOR X=1 TO 1000: NEXT X
30 CLS
35 PRINT@ 64, "JOY TO THE WORLD"
40 PRINT 61 96, "THE LORD IS COME"
45 PRINT 61 128, "LET EARTH RECEIVE HER KING"
50 PRINT 61160, "LET EVERY HEART"
55 PRINT 61192, "PREPARE HIM ROOM"
60 PRINT 61 224, "AND HEAVEN AND NATURE SING"
65 PRINT 61 256, "AND HEAVEN AND NATURE SING"
70 PRINT 61 288, "AND HEAVEN AND HEAVEN AND NATURE SING"
1 0 0 A$=" T 4; 03 , L 2; C; L 4; 0 2; B; L 8; A; L 4, ; G; L 4; F ; L 2; E; D; "
1 0 5 B $ =" L 2 • ; C ; P 3 2 ; L 4; G ; L 2; A; L4; P3 2 ; A; L 2 • ; B; P 3 2; L4; B; 03 ;

L1.;C"
110 C$="L4;C;C;02;L4;B;A;G;L4.;G;L8;F;L4;E;03;C
115 D$="03;L4;C;02;B;A;G;P32;L4.;G;L8;F;L4;E;P32;E;

P32;E;P32;E;P32;E;P32;E;P32;L8;E;F
1 2 0 E $ =" L 2 • ; G; L 8; F ; E; L 4; D; P3 2; D; P3 2; D; P3 2; L 8; D; E;

L2.;F;L8;E;D"
1 2 5 F $ = "0 2; L 4; C ; 03 ; L 2; C; 0 2; L 4; A; L 4 . ; G; L 8; F; L 4; E; F ; L 2;

E;D;L1;C"
130 X$ = "XA$;XB$;XC$;XD$;XE$;XF$;"
135 PLAY X$
200 PMODE 3,1
205 PCLS 4
210 SCREEN1,0
215 COLOR1,4
220 LINE (90,96)-(118,26), PSET
230 LINE (90,96)-(146,96), PSET
235 DRAW "BM112,96;D15;R10;U15"
240 LINE (0,112)-(255,96), PSET
245 PAINT (238,85),1,1
250 X = RND(255)
255 Y=RND(114)
260 A= RND (4)
265 PSET(X,Y,A):GOT0250

257

Sample Programs

258

Sample Program #2
1 '***BACKTOBACH***
2
5 CLS
10 PRINT@ 96, STRING$(32,"*")
20 PRINT@ 320, STRING$(32,"*")
25 PRINT@ 201, "BACK TO BACH"
40 FOR X = 1 TO 1000: NEXT X
55 A$= "T6;O2;L2;G;L4;C;D;E;F;LZ;G;C;P16;C"
60 B$ = "L2;A;L4;F;G;A;B;O3;LZ;C;OZ;C;P16;C;F;L4;G; F;E;D"
65 C$ = "L2;E;L4;F;E;D;C;L2;O1;B;OZ;L4;C;D;E;C"
70 0$ = "L2;E;L1;D;L2;G;L4;C;D;E;F;LZ;G;C;P16;C"
75 E$ = "L2;A;L4;F;G;A;B;O3;L2;C;O2;C;P16;C;F;L4;G; F;E;D"
80 F$ = "L2;E;L4;F;E;D;C;D;E;L2;F;O1;B;L1;O2;C"
85 X$ = "XA$;XB$;XC$;XD$;XE$;XF$;"
90 PLAYX$

Sample Program #3
1
2
5
1 0
20
30
40
125
130
135
140
145
150
155
160
165
170
180

185
190

195
197

200
210
220
225
230
235
240
245
250
255

'*** MEXICAN HAT DANCE***

C LS
PRINT@ 96, STRING$(32,"*")
PRINT @320,STRING$(32,"*")
PRINT@ 199, "MEXICAN HAT DANCE"
FOR X=1 TO 500: NEXT X

REM START TUNE
O$="V15;T3;O2;"
P$="L8CFP8CFP8CFP4P8"
Q$="CFGFEP8FGP4P8"

X$="XOS;XPS;XQ$;"
PLAY XS
RS="CEP8CEP8CEP4P8"
SS="CEFEDP8EFP4P8"
YS= 11 XOS;XRS;XS$;"
PLAY Y$
REM 2ND TIME

OS="V25;T3;O1"
PLAY XS

O$="T3;O4"
SS="CEFEDP8EFO4CO3AF"
PLAY YS
AS="O3CO2BO3CO2AA-AFEFCP4"
B$="CO1BO2CDEFGAB-O3C3G"
O$="V15;T4;"
Z$= 11 XO$;XAS;XBS; 11

PLAY QS
CS="0EB-AB-GF+FEG-ECEG"
DS="O4L16CP16CP16CP16L8DCO3B-AGFP4"
ES= 11 XO$;XCS;XD$; 11

PLAY ES

Sample Programs

260 F$="02L16GP16GP16GP16DP16DP16DP16EP16FP16L8EL16GP
1601GP1GL8G

265 G$="V1502L16GP16GP16GP16DP16DP16DP1GEP1GFP1GL8
EC01 GC"

270 H$= 11 XF$;XG$; 11

280 PLAY H$
285 I$=XF$;"
290 PLAY I$

295 J$="02L16GP16GP16GP16AP16GP16GP16AP16BP1G03L4CP8"
300 PLAY "XJS;"
310 K$= 11 04L1DL4DEDEL8DEOEL16DEDEDEDEL32DEDEDEOEOEDEO

EDEL64DEDEDE DEDEOEDEDEOEDEDEDEL320D-C03BB-AA-GF
+FEE-ODD-L40D-"

320 PLAY "XI($;"
330 M$="T5L8D02BB-BGF+GL4DP8"
340 N$="L8DC+OEF+GAB03C02L4AP8"
350 AA$="03L8C02B02C02AG+AF+FF+L4DP8"
370 BB$="03L8DODEOC02BA03DEDC02BA"
380 CC$="020EOC01BA04DEOOEOOEOOEF+G003BGT4D02BGT3001

T2BL4P2V30L1G"
400 PLAY "XM$;XN$;XAA$;XBB$;XCC$; 11

500 PMODE4,1
505 FOR Y=1 TO 5
510 SCREEN 1,0
520 PCLS
550 CIRCLE (128,96),50,1,.2,.85,.67
560 CIRCLE (128,96),25,1,2,.5,1
570 LINE (105,96)-(151,96),PSET
600 PMOOE4,1
610 SCREEN1,0
620 PCLS
63 0 CIRCLE (128, 7 5) , 5 0, 1 , . 2, . 8 5, . 6 7
660 CIRCLE (128,75),1,2,.5,1
670 LINE (105,75)-(151,75), PSET
675 NEXT Y
680 IF Y>5 THEN 690
685 GOTO 50
690 CLS
700 PRINT@ 227, "NOT THAT'S A HOT TAMALE"
710 FOR X=1 TO 600: NEXT X
720 GOTO 5

259

Sample Programs

Sample Program #4
1 ' *** BUFFALO GALS***
2
5 CLS
10 PRINT@ 64, STRING$(32,"*")
15 PRINT@ 384, STRING$(32,"*")
20 PRINT@ 201, "BUFFALO GALS"
25 FOR X=1 TO 1000: NEXT X: CLS
30 PRINT@ 32, "AS I WAS WALKING DOWN THE STREET"
35 PRINT@ 64, "DOWN THE STREET, DOWN THE STREET"
40 PRINT@ 96, "A PRETTY GAL I HAPPENED"
45 PRINT@ 133, "TO MEET"
50 PRINT@ 160, "JUST AS LOVELY AS"
55 PRINT@ 197, "THE MORNING DEW"
60 PRINT@ 224, "BUFFALO GALS WON'T YOU"
65 PRINT@ 261, "COME OUT TONIGHT"
70 PRINT@ 288, "COME OUT TONIGHT,"
75 PRINT @320, "COME OUT TONIGHT,"
80 PRINT @352, "BUFFALO GALS WON'T YOU"
85 PRINT@ 391, "COME OUT TONIGHT"
90 PRINT@ 416, "AND DANCE IN THE"
95 PRINT@ 453, "LIGHT OF THE MOON."
100 A$=" T 4; C; E; P3 2; E; F; P 3 2; F; A; G; L 2; E;"
105 B$="L4;G;F;L2;D;L4;A;G;E;C;"
110 C$="L4;E;P32;E;F;P32;F;L8;A;P32;A;L4;G;E;03;L8;C;

P32;C;"
115 D$="02;B;P32;B;G;P32;G;L4;F;01;B;02;L1;C;P16;"
120 E$="L8;G;P32;G;L4;F;L2;D;L4;A;L8;G;P32;G;L2;E"
130 G$="L8;C;P64;C;P64;L4;C;E;L8;G;P32;G;L4;A;L8;G;

P32;G;L4;E;03;C;"
135 H$="02;B;L8;G;P32;G;F;P32;F;L4;D;L2.;C;"
140 X$="XA$;XB$;XC$;XD$;XE$;XF$;XG$;XH$;"
145 PLAYX$
150 CLS
155 PRINT@ 230, "THAT'S ALL FOLKS"

Sample Program #5
1 '*** IN-OUT ***
2
5 PMODE 3,1
10 PCLS3
15 SCREEN1,0
20 FOR !=3 TO 7
25 FOR J=2 TO 6
30 FOR S=0 TO 3
35 FOR R=0 TO 3
40 COLOR R,S
45 A=0: 8=255: C=0: D=191
50 LINE (A,C)-(B,D), PSET,B
55 A=A+J: B=B-J: C=C+I: D=D-I
60 IF A<255 AND C<191 THEN 50
65 NEXT R
70 NEXT S
75 NEXTJ
76 NEXT I
80 GOTO 80

260

Sample Programs

Sample Program #6
1 '*** DRAWING TRIANGLES***
10 CLS: CLEAR
75 PRINT@ 96, STRING$(32,"*")
80 PRINT@ 288, STRING$(32,"*")

100 PRINT@ 160, "THIS PROGRAM DRAWS THE TRIANGLE YOU
SPECIFY AND THEN CALCULATES ITS AREA"

110 FOR X=1 TO 2200: NEXT: CLS

120 CLS:PRINT "FOR 3 SIDES TYPE, SSS (0-100)"
125 PRINT "FOR 2 SIDES (1-100) AND 1 ANGLE (0-90) TYPE,

SAS"
130 PRINT "FOR 1 SIDE (0-60) AND 2 ANGLES (0-90) TYPE,

AS A II

140 INPUT A$: IF A$= 11 SAS" GOTO 300

150 IF A$= 11 ASA" GOTO 400
200 'SSS
210 PRINT "ENTER 3 SIDES, (LONGEST SIDE FIRST)"

220 INPUT L1,L2,L3

225 IF L2>L1 OR L3>L1 THEN PRINT"*** LONGEST FIRST
PLEASE ••• ": PRINT: GOTO 210

230 S=(L1+L2+L3)/2

235 IF S<L1 THEN PRINT "***NOT A TRIANGLE***": PRINT:
GOTO 210

240 Y3=2*SQR(S*(S-L2)*(S-L1)*(S-L3))/L1
250 A=Y3/L2: A=ATN(A/SQR(-A*A+1))
260 X3=COS(A)*L2

270 AR=(L1*Y3)/2

280 GOTO 490

300 'SAS
310 PRINT "ENTER 2 SIDES AND 1 ANGLE: AB,AC,THETA

(LARGEST SIDE FIRST)"

320 INPUTL1,L2,T
325 T=(T*3.14159)/180

330 Y3=L2*SIN(T)

340 X3=COS(T)*L2

350 AR=(L1*Y3)/2: GOTO 490
400 'ASA
410 PRINT "ENTER 2 ANGLES AND 1 SIDE: THETA1,THETA2,AB"
420 INPUT T1, T2, L2

425 T1=(T1*3.14159)/180: T2=(T2*3.14159)/180
430 Y3=L2*SIN(T1)

440 B1=COS(T1)*L2

450 B2=Y3/TANCT2)

460 L1=81+82: XE=B1: IF LX>L1 THEN X=L1: L1=L2: L2=X

470 AR=(L2*Y3)/2

490 CLS: PMODE4,1: PCLS:SCREEN 1,1
500 F=1
510 VC=(3.14159 * (L1*F-X3*F)*(Y3*F)t1)/3

520 VS=(3.14159 * (X3*F)*(Y3*F)t2)/3: VT=VC+VS
530 S1=Y3/X3: S2=Y3/CX3-L1)

532 IF INT(X3) = 0 THEN 1100
533 IF INT(X3) = INTCL1> THEN 1000
535 IFX3>L1THEN1100

261

Sample Programs

537 IF X3=L2 THEN 1000

540 FOR Y=20 TO L1*2+20 STEP 2:PSET(Y,Y3+5,5): NEXT

550 FOR X=0 TO X3
551 PSET(X*2+20,S1*(X3-X)+5,5): NEXT

560 FOR X=X3 TO L1: PSET(X*2+20,Y3+(S2*(L1-X)+5),5):

NEXT
580 FOR X=1 TO 600: NEXT X
610 PRINT@ 130, "AREA=";AR;" SQ. UNITS";
630 PRINT @352, "*"i: INPUT "TO RUN AGAIN, PRESS <1>

<ENTER>"; 86: IF 86=1 THEN 120

640 STOP: GOTO 10
1000 FOR Y=5 TO Y3+5: PSET (X3*2+20, Y, 4): NEXT: GOTO 540

1100 FOR Y=5 TO Y3+5: PSET(20,Y,5): NEXT: GOTO 540
1200 FOR X=L1 TO X3: PSET (X*2+20, Y3+(S2*(L1-X)+5) ,5):

NEXT: GOTO 540

Sample Program #7
1 '*** PROJECTION STUDIES***
2
5 PMODE4,1
10 PCLS

15 SCREEN1,0
20 DRAW "BM50, 50R60D10N L20D20 L20NU20 L20NU20L20U20NR

20U10" 'TOP VIEW
25 DRAW "BM50, 100R20ND20R20ND20R20D20NL20D10L60U10NR

20U10" 'FRONT VIEW
30 DRAW "BM150,100R30D30L30U10NE20U20" 'SIDE VIEW
35 'OBLIQUE VIEW - LINES 40-60

40 DRAW "BM150, 50U5E15R10BF20BD30NR5 L20H25U10"
45 DRAW "BM150, 50U5 F8U1 5R1 5H8 F8 L 15F8NR15D15 F8N010E

15NR10H8"
50 LINE (175,30)-(200,55), PSET
55 LINE -(20,80), PSET
60 LINE (167,60)-(183,46), PSET

65 GOTO 65

262

Sample Programs

Sample Program #8
1 '*** UNFOLDING BOX***
2
5 PC LEAR 8
10 PMODE 3,1
15 PCLS
20 COLOR6,5
25 DRAW "BM100, 100U30NR30E15R30NG15D30G16NU30L30"
30 PAINT (105,95),8,6
35 PAINT (135,80),8,6
40 PAINT (110,65),8,6
45 SCREEN 1, 1
50 FOR X=1 TO 600: NEXT X
110 PMODE 3,5
112 PCLS
115 COLOR 6,5
120 DRAW "8M100, 100U30NR30E20R30G20D30NL30F20L30H20"
125 LINE (100,100)-(70,95), PSET
130 LINE - (70,65), PSET
135 LINE - (100, 70), PSET
140 LINE (70,95)-(40,65), PSET, B
145 LINE (130,100)-(160,95), PSET
150 LINE - (160,65), PSET
155 LINE - (130, 70), PSET
160 PAINT (95,95),8,6
165 PAINT (105,95),8,6
170 PAINT (135,85),8,6
175 PAINT (45,85),8,6
180 PAINT (115,65),8,6
185 PAINT (125,114),8,6
190 SCREEN1,1
195 FOR X=1 TO 600: NEXT X
200 GOTO 10

Sample Program #9
1 '*** SINE WAVE***
2
5 PMODE4,1
10 PCLS
15 SCREEN1,1
20 LINE (0,96)-(255,96), PSET
25 PI=3.14159
30 A1=-4•PI
35 A2=4*PI
40 N=180
45 R=50
50 X=(A2-A1)/N
55 F=255/(A2-A1)
60 FOR I=A1 TO A2 STEP X
65 X=I*F
70 Y=R•SIN(I)
75 PSET C<X+140),(96+Y),1)
80 NEXT I
90 GOTO 90

263

Sample Programs

Sample Program #10
1 I*** SIN/COS***
2
10 PMODE4,1
20 PCLS

30 SCREEN 1,0
40 LINE (127,5)-(127,185), PSET
50 LINE (7,95)-(247,95), PSET

60 FOR XSCALE=7 TO 247 STEP 20

70 PRESET (XSCALE,95)

80 NEXT XSCALE

90 FOR YSCALE=5 TO 185 STEP HI
100 PRESET (127,YSCALE)

110 NEXT YSCALE
130 FOR X=-180 TO 180 STEP 1. 5

140 AX=X/57.29578
145 XP=X/1. 5+127

150 F1=-(SIN(AX)*90)+95

160 F2=-(COS(AX)*90)+95

170 PSET (XP,F1,1): PSET(XP, F2,1)

180 NEXT X
190 GOTO 190

Sample Program #11

1 *** RANDOM GRAPHICS***
2
10 PMOOE3,1
15 PCLS
20 SCREEN 1, 1
25 F=R-ND(4): B=RND(8): IF B=F OR (B-4=F) THEN 25

30 COLOR F,B:PCLS B: FOR L=0 TO 5
35 LINE -(RN0(255), RN0(191)), PSET
40 CIRCLE (RN0(255), RNO (191)), RNDC100)

50 NEXT: FOR P0=0 TO 10
55 PAINT (RND(255), RND(191)), RND(4),F

60 NEXT: FOR H=1 TO 7
65 FOR T=0 TO 600: NEXT T: GOTO 10

264

Sample Programs

Sample Program #12
1 '*** NAVAHO BLANKET***
2
5 PMODE3,1
10 PC LS 4
15 SCREEN1,0
20 COLOR1,0
25 FOR X=0 TO 255 STEP 10
30 OY=Y
35 Y=30-OY
40 LINE (X,100-Y)-(X+10,100-OY), PSET
45 LINE (X,120+Y)-(X+10,120+OY), PSET
50 NEXT
60 FOR C=2 TO 4
65 PAINT (O,110),C,1
70 NEXT
80 GOTO 60

Sample Program #13
1 '*** PAINTED LACE***
2
5 PHODE3,1
10 PCLS
20 SCREEN 1, 1
30 DRAW "BM50, 180U60BU20U60R60BR20R60D60BD20D60L60

BL20L60
40 DRAW "BM50,180U60R40BR20R80D20BL20L60BL20L20D20

R20BR60R20U20
5 0 DR AW "BM 5 0, 1 80 R 60 U8 0 8 U 2 0 U4 0 L40 8 D 2 0 D 2 0 8 D6 0 D 2 0 R 2 0

U60BU20U20L20
60 DRAW "BM50, 180U60BU40BR20R60BR20R20U20L20D60BD20

D20R20
70 DRAW "BH50, 180BR80U40BU20U80
80 DRAW "BM50, 180BU80R80BR20R40
90 PAINT (85,128),6,8
95 PAINT (95, 78) ,6,8
97 PAINT (155,95),6,8
98 PAINT (135,145),6,8
99 PAINT (128,185),7,8
100 PAINT (75,150),7,8
101 PAINT (160,150),7,8
102 PAINT (75,75),7,8
103 PAINT (160,75),7,8
104 PAINT (120,110),7,8
110 FOR X=1 TO 600: NEXT X
200 GOTO 5

265

Sample Programs

266

Sample Program #14
1 '*** DRAWING BOARD***
2
3 C LS
5 PRINT@ 128, STRING$(32,"*"): PRINT@ 288,

STRING$(32,"*")

10 PRINT@ 200, "DRAWING BOARD"

15 FOR X=1 TO 600: NEXT X

20 C LS
25 PRINT@96, "PRESS <t> FOR UP, <DOWN ARROW> FOR DOWN,

<LEFT ARROW> FOR LEFT, <RIGHT ARROW> FOR RIGHT,
<A> FOR SOUTHWEST, <S> FOR SOUTHEAST,

<W> FOR NORTHEAST, <Q> FOR NORTHWEST"

30 PRINT@ 288, "PRESS <1> FOR INVISIBLE LINE,
<2>, <3> OR <4> FOR DIFFERENT COLORED VISIBLE LINE,

PRESS</> TO CHANGE COLOR-SET"
35 PRINT@ 488, "PRESS <SPACEBAR> TO PAUSE"

40 FOR X=1 TO 4800: NEXT X
45 CC=4: TG=0

50 PMODE3,1
55 PCLS
60 SCREEN 1, TG
70 X=128: Y=96: XI=0: YI=0
80 U$= 11 t 11 : D$=CHR$(10): W$=CHR$(8): E$=CHR$(9)

90 NW$="Q": NE$="W": SW$="A": SE$="S"
100 C1 $= 11 1 11 : C2$="2": C3$="3": C4$="4"

110 A$=INKEY$
120 IF A$=U$ THEN YI=-1: XI=0: GOTO 240
130 IF A$=D$ THEN YI=1 :XI=0: GOTO 240

140 IF A$=W$ THEN XI=-1 :YI=0: GOTO 240
150 IF A$=E$ THEN XI=1 ;YI=0: GOTO 240

160 IF A$=NE$ THEN XI=1 :YI=-1: GOTO 240

170 IF A$=NW$ THEN XI=-1 :YI=-1: GOTO 240
180 IF AS=SE$ THEN XI=1 :YI=1: GOTO 240
190 IF A$=SW$ THEN XI=-1 :YI=1: GOTO 240
200 IF C1$<A$ AND A$<=C4$ THEN CC=ASC(A$)-48: GOTO 240

210 IF A$="/" THEN TG=(NOT TG AND 1) OR (TG AND NOT 1):

GOTO 240

220 SCREEN 1, TG

230 IF A$=" 11 THEN XI=0: YI=0
240 X=X+XI: Y=Y+YI: IF X<0 THEN X=0

250 IF X>255 THEN X=255
260 IF Y<0 THEN Y=0

270 IF Y>191 THEN Y=191
280 PSET (X,Y,CC)

290 GOTO110

Sample Programs

Sample Program #15
1 '*** INTERACTING LINES***
2 I

5 C LS
20 C=C+1
25 IF C>8 THEN C=5
30 COLORC,1
50 PR I NT "TYPE X0, Y0";
60 INPUTX0,Y0
7(1) PRINT "TYPE X1, Y1 ";
80 INPUT X1, Y1
9(1) PMODE 3,1
95 PCLS
100 SCREEN 1, 1
11 0 LINE (X0, Y0)-(X1, Y1), PSET
115 FOR X=1 TO 2000: NEXT X
120 GOTO 20

Sample Program #16
1 I*** RANDOM LINES ***
2
20 PMODE4,1
25 PCLS
30 SCREEN1,1
35 X=RND(255): Y=RND(191)
40 LINE -(X, Y) I PSET
45 FOR X=1 TO 200: NEXT X
50 GOTO 35

Sample Program #17
1 '*** 8-LEAF CLOVER***
2
5 PC LEAR 8
10 PMODE 4,1
15 PCLS
20 SCREEN1,(I)
25 Pl=3.14159
30 A1=0:A2=2*PI
35 N=360:A=50
40 X=CA2-A1)/N
45 FOR I=A1 TO A2 STEP X
50 R=A•COS(4*I)
55 X=R*S IN (I)

60 Y=R*COS(I)
65 PSET (128+X,96+Y,5)
70 NEXT I
75 GOTO 75

267

Sample Programs

Sample Program #18
1 '*** TI ME BOMB ***
2
10 PMODE4,1
15 PCLS
20 SCREEN 1, 1
25 CIRCLE (128,96),80
30 CIRCLE (128,96),90
35 PAINT (0,0),5
0 FOR T=30 TO -30 STEP -1
45 A=(2*3,1415)*T/6e
5e LINE (128,96)-(75•SIN(A)+128,75*COS(A)+96), PSET
55 SOUND Q*2+1,20/(Q+1)+1
6e LINE (128,96)-(75•SIN(A)+128,75*COS(A)+96), PRESET
65 Q=6e-2*T: FOR Y=Q TO e STEP -1 :NEXT
70 NEXT
75 C LS
80 PCLS
85 PRINT@237, "BOOM!"
90 SOUND 1,3e
95 PMODE4,1
10 SCREEN1,1
1e5 FOR I=2 TO 200 STEP 2
110 CIRCLE (128,96), I
115 NEXTI
12e SCREEN1,1
125 FOR X=2 TO 200 STEP 2
130 CIRCLE (128,96), 1,3,.5
135 NEXT X
140 FOR 1=2 TO 200, STEP 2
145 CIRCLE (128,96),I,3,.5
150 NEXT I
155 GOT0155

Sample Program #19
'*** ROTATING FAN***

2
5 PC LEAR 8

50 GOTO 600
60 LINE ((255-X),(191-Y))-(X,Y), PSET

61 J=J+1: IF J>A THEN J=0: A=RND(50)
63 RETURN
60 REM ROTATING FAN
601 FOR !=1 TO 5 STEP 4
602 PMODE 3, I
603 PCLS
604 SCREEN 1,0

605 A=25: X=0: Y=0: J =0
610 FOR X=0 TO 254
612 COLOR X/32+1, 5

268

Sample Programs

615 GOSUB 60: NEXT X
620 FOR Y=0 TO 190
623 COLOR Y /24+1, 5
625 GOSUB 60: NEXT Y
630 FOR X=255 TO 1 STEP -1
640 FOR Y=191 TO 1 STEP -1
643 COLOR 6/24+1, 5
645 GO SUB 60: NEXT Y
650 NEXT I
660 FOR I=1 TO 5 STEP 4
670 PMODE 3,I
680 SCREEN 1,0
690 FOR T=1 TO 30: NEXT T
700 NEXT I
710 GOTO 660

Sample Program #20
1 '*** WALKING TRIANGLES***
10 FOR A=90 TO 0 STEP -4
15 S1=A*9: S2=191
20 A3=A/57.29578
30 X1=0: Y1=191
40 X2=S1 +X1: Y2=Y1
50 X3=X1+S2*COS(A3):Y3=Y1-S2*SIN(A3)
55 GOSUB1000
90 NEXT A
99 GOTO 99
1000 PMODE4,1
1005 PCLS
1010 SCREEN1,0
1020 LINE (S1,Y1)-(X2,Y2), PSET
1030 LINE-(X3,Y3),PSET
1040 LINE-(X1,Y1),PSET
1060 RETURN

Sample Program #21
1 '***COUNTING***
2
10 CLS
20 CLEAR 1000
30 PRINT "WHERE DO YOU WANT TO START COUNTING?"
35 INPUT AS
40 P=LEN(A$)
50 PRINT: PRINT A$
60 C=VAL(MID$(AS,P,1)) + 1
70 MS$=A$: MRS=RIGHTS(STRS(C),1): PS=P: GOSUB 200:

A$=MS$
80 IFC<10THEN40
90 P=P-1
100 IF P=0 THEN IF LEN(A$)=255 THEN PRINT "OVERFLOW":

ENO: ELSE A$="1"+A$: GOTO 40
110 GOT060
200 LS=LEN(MS$)
210 IF LS<>LEN(MR$)+LS-1 OR PS<1 THEN STOP
220 MS$=LEFT$(MS$,PS-1)+MR$+RIGHT$(MSS,LS-PS)
230 RETURN

269

Sample Programs

270

Sample programs 22-30 highlight BASIC version 2.

Sample Program #22
1 0
20

30

40

50

60
70
80
90

100

110
120
130
140
150
160
170
180

190

200
210

220
230
240

250

260
270
280

290

300

310

320

330
340

350

360

370
380

390

400
410

REM INTRO

ON BRK GOTO 400
PALETTE CMP: WIDTH 32

PRINT "THE COLOR COMPUTER 3 CAN DO ALL"
PRINT "THE THINGS THAT THE OTHER"

PRINT "MEMBERS OF THE COLOR COMPUTER"
PRINT "FAMILY CAN, PLUS A LOT MORE."

PRINT "YOU CAN CHOOSE FROM 32, 40, AND"

PRINT "80 COLUMN TEXT SCREENS."

PRINT: PRINT "THIS IS 16 LINES, 32 COLUMNS."
FOR T:::1 TO 5000: NEXT

WIDTH 40:ATTR 2, 0: LOCATE 5, 11
PRINT "This is 24 lines, 40 columns."
LOCATE 0, 23

FOR T=1 TO 2000: NEXT
WIDTH 80: LOCATE 25, 11

PRINT "This is 24 lines, 80 columns."
LOCATE 0, 23

FOR T=1 TO 2000: NEXT
WIDTH40

PRINT TA8(14) ;"NEW FEATURES": PRINT

PRINT "The Color Computer 3 offers:": PRINT

PRINT" ADVANCED 40 AND 80 COLUMN TEXT"
PRINT"
PRINT"

-UPPER and lower case letters"
-Special characters:"

PRINT" ";
FOR 2=128 TO 159: PRINT CHRS(Z);: NEXT: PRINT

PRINT" -";: ATTR 2, 0, B: PRINT "BLINKING":
ATTR 2, 0
PRINT" -";: ATTR 2, 0, U: PRINT "UNDERLINING";:
ATTR 2, 0: PRINT

PRINT" -";: ATTR 2, 0, 8, U: PRINT "BOTH";:
ATTR 2, 0: PRINT

AS= "COLOR": PRINT" -";: FOR Z=1 TO 5: ATTR Z-1, Z+2:
PRINT MIDS(AS,Z,1);: NEXT: ATTR 2, 0: PRINT

PRINT: PRINT" POWERFUL NEW HIGH-RESOLUTION GRAPHICS"
PRINT"

PRINT"

PRINT"

-640V x 192H with 4 colors"

-320V x 192H with 16 colors"

-Shows 16 colors, with 64 to"
PRINT" choose from."

PRINT" -Programs can print text on"

PRINT" the graphics screen."
LOCATE 0, 23: FOR T=1 TO 15000: NEXT
PALETTE CMP: ATTR 2, 0: WIDTH 40

END

Sample Programs

Sample Program #23
10 REM HCOLORS

20 ON BRK GOTO 430
30 WIDTH 40: PALETTE CMP: ATTR 2, 0: LOCATE 0, 3

40 PRINT "SEE ALL 64 COLORS, 8 AT A TIME.": PRINT: PRINT

50 ATTR 2,0, B
60 PRINT "PRESS SPACE BAR TO BEGIN.": PRINT

70 PRINT "PRESS BREAK KEY TO STOP."

80 ATTR1,0:LOCATE0,23

90 A$=INKEY$: IF A$="" THEN 90
100 IF ASCCA$)=3 THEN 430

110 REM HCOLORS
120 REM SHOW ALL 64 COLORS, 8 AT A TIME
130 HSCREEN 2

140 FORZ=0TO7

150 PALETTE CMP
160 HCLS

170 FORY=tTO7

180 C=Y+Z*8
190 PALETTEY,C
200 PALETTE Y+8, CC+32) AND 63

210 HCOLORY,0
220 HLINE C0,Y*24)-(319,Y*24+23), PSET, BF
230 HCOLOR CY+1) AND 7, 0
240 HPRINT (4, Y*3+1), C

250 HCOLOR Y+8, 0
260 H PR I NT (33, Y•3+1), C

270 NEXT

280 HCOLOR 3, 0
290 HPRINT (8, 7), "PRESS"
300 HCOLOR 4, 0

310 HPR I NT (8, 10), "SPACE"

320 HCOLOR 5, 0
330 HPRINT (9,13), "BAR"

340 HCOLOR10,0
350 HPRINT (27, 7), "PRESS"

360 HCOLOR 11, 0

370 HPRINT (27,10), "SPACE"

380 HCOLOR12,0

390 HPRINT (28,13), "BAR"

400 A$=INKEY$: IF A$="" THEN 400
410 IF ASC(A$)=3 THEN 430

420 NEXT
430 HSCREEN 0: PALETTE CMP: ATTR 2, 0: CLS

440 END

271

Sample Programs

272

Sample Program #24
10 REM PALETTE
20 ON BRK GOTO 200

30 GOSUB 60
40 FOR Y=0 TO 7: PALETTE Y, RND(64)-1:

PALETTE Y+8, RND(64)-1: NEXT: GOTO 40

50 GOTO 200
60 WIDTH 40: PALETTE CMP

70 LOCATE 1, 0: ATTR 0, 4, U
80 PRINT "COLOR COMPUTER 3 PALETTE DEMONSTRATION";
90 ATTR 0, 4: LOCATE 8, 6: ATTR 0, 4, B
100 PRINT "PRESS SPACE BAR TO BEGIN";
110 ATTR0,4:LOCATE9,11
120 PRINT "PRESS BREAK KEY TO STOP";
130 ATTR 2, 0: LOCATE 0, 23
140 K$=1NKEY$: IF K$= 1111 THEN 140
150 IF ASC(K$)=3 THEN 200

160 HSCREEN 2
170 FOR C=0 TO 15: FOR V=37 TO 157 STEP 30:

D=((V-37>/15+C) AND 15: HCIRCLE((C*20)+10,V), 9, 2:
HPAINT((C*20)+10,V), D, 2: NEXT V, C

180 FOR Z=0 TO 7: HCOLOR Z, 0:
HLINE(0,Z*3)-(319,2+Z*3), PSET, BF: HCOLOR Z+8, 0:
HLINE(0,168+Z*3)-(319,170+Z*3), PSET, BF: NEXT

190 RETURN
200 PALETTE CMP: HSCREEN 0: ATTR 2, 0: CLS
210 PRINT "THAT WAS FUN I": PRINT
220 END

Sample Program #25
10
20
30
40
50
60
70

80
90
100
110
120
130
140
150
160
170
180
190
200
210

REM COLORBOX
ON BRK GOTO 200
GOTO 50
FOR Z=0 TO 15: PALETTE Z, RND(64)-1: NEXT: GOTO 40
WIDTH 40: PALETTE CMP: ATTR 2, 0
PRINT "COLORBOX": LOCATE 0, 5
ATTR 2, 0, B: PRINT "PRESS SPACE BAR TO BEGIN.": PRINT:
PRINT

PRINT "PRESS BREAK KEY TO STOP.": ATTR 2, 0: LOCATE 0, 23
A$=INKEY$: IF A$='"' THEN 90
IF ASC CA$) =3 THEN 200

HSCREEN 2
FOR Z=0 TO 95: C=Z AND 15
PALETTE C, RNDC64)-1: HCOLOR C, 0
HLINE(Z,Z)-(319-Z,Z), PSET
HLINE-(319-Z,191-Z), PSET
HLINE-(Z,191-Z), PSET
HLINE-(Z,Z), PSET

NEXT
GOTO 40
HSCREEN 0: PALETTE CMP: ATTR 2, 0: CLS
END

Sample Programs

Sample Program #26
10 REM HPUT DEMONSTRATION
20 ON BRK GOTO 400
30 WIDTH 40: PALETTE CMP: CLS
40 PRINT "HPUT DEMONSTRATION"
50 LOCATE0,5:ATTR2,0,B
60 PRINT "PRESS SPACE BAR TO BEGIN": PRINT: PRINT
70 PRINT "PRESS BREAK KEY TO STOP"
80 ATTR2,0:LOCATE0,23
90 AS=INKEYS: IF AS="" THEN 90
100 IF ASC(AS)=3 THEN 400
110 HBUFF1,799
120 HSCREEN 2
130 PALETTE CMP
140 HCLS 0
150 HCIRCLE(20,20), 10, 2
160 HCIRCLE(20,20), 5, 3
170 HCIRCLE(10,10), 5, 4
180 HCIRCLE(10,30), 5, 5
190 HCIRCLE(30,10), 5, 6
200 HCIRCLE(30,30), 5, 7
210 HPAINT(20,20), 3, 2
220 HCOLOR 1, 0
230 HLINE(0,0)-(39,39), PSET
240 HCOLOR 6, 0
250 HLINE(10,20)-(30,20), PSET
260 HCOLOR 7, 0
270 HLINE(20,10)-(20,30), PSET
280 HCOLOR 4, 0
290 HLINE(0,0)-(0,39), PSET
300 HLINE(39,0)-{39,39), PSET
310 HCOLOR 5, 0
320 HLINE(0,0)-(39,0), PSET
330 HLINE(0,39)-(39,39), PSET
340 HGET(0,0)-(39,39), 1
350 PALETTE RND(8)-1, RND(64)-1
360 GOSUB 420: HPUT(X,Y)-(X+39,Y+39), 1, PSET
370 GOSUB 420: HPUT(X,Y)-(X+39,Y+39), 1, AND
380 GOSUB 420: HPUT (X, Y)-(X+39, Y+39), 1, OR
390 AS=INKEYS: IF AS="" THEN 350
400 HSCREEN 0: PALETTE CMP: CLS
410 END
420 X=2*INT(RND(278)/2)
430 Y=RND(150)
440 RETURN

273

Sample Programs

Sample Program #27
10 REM LOOPS
20 ON BRK GOTO 190

30 HSCREEN 2: PALETTE CMP: PALETTE 0, 0
40 MIDDLE=RND(35)+5

50 SIZE=30+RND(70)

60 HCLS 0
70 HCOLOR 1, 0: HPRINT(8,0), "PRESS BREAK KEY TO STOP"

80 HCOLOR 2, 0: HPRINT(8,23), "PRESS BREAK KEY TO STOP"

90 FOR Z=0 TO 6. 3 STEP • 045
100 XOFFS=COS(Z)*MIDDLE+159.5
110 YOFFS=SIN(Z)*MIDDLE+95.5
120 PALETTE RND(15), RND(63)

130 CO=RND(16)-1

140 HCIRCLE(XOFFS,YOFFS), SIZE, CO, .45, .8, .2
150 HCIRCLE(XOFFS,YOFFS), SIZE, CO, .45, .3, .7

160 NEXT
170 FOR T=1 TO 4000: NEXT

180 GOTO 40
190 PALETTE CMP: HSCREEN 0: CLS: END

Sample Program #28
10 REM STRINGS
20 ON BRK GOTO 250
30 WIDTH 40: PALETTE CMP
40 PRINT "AUTOMATIC STRING ART": LOCATE 0, 5

50 ATTR 2, 0, B: PRINT"PRESS SPACE BAR TO BEGIN.":
PRINT: PRINT

60 PRINT "PRESS BREAK KEY TO STOP": ATTR 2, 0: LOCATE 0, 23

70 A$=INKEY$: IF A$='"' THEN 70
80 IF ASC(A$)=3 THEN 250

90 HSCREEN 2: PALETTE CMP: PALETTE 0, 0
100 X1 =RND (150): Y1 =RND (90): X2=RND (150) +168:

Y2=RND (90) +100: LC=0
110 HCOLORRND(7),0

120 HLINE(X1,Y1>-(X2,Y2), PSET

130 LC=LC+1: IFLC=200 THEN HCLS: GOTO 100

140 X1 =X1-4: X=X1: GO SUB 190: X1 =X
150 Y1 =Y1-4: Y=Y1: GOSUB 220: Y1 =Y

160 X2=X2+3: X=X2: GOSUB 190: X2=X

170 Y2=Y2+2: Y=Y2: GOSUB 220: Y2=Y

1 80 GOTO 110
190 IF X<0 THEN X=319+X: RETURN
200 IF X>319 THEN X=X-319

210 RETURN
220 IF Y<0 THEN Y=191+Y: RETURN

230 IF Y>191 THEN Y=Y-191

240 RETURN

250 HSCREEN 0: PALETTE CMP: CLS: END

274

Sample Programs

Sample Program #29
10 REM RANDOM
20 ON BRK GOTO 240
30 WIDTH 40: PALETTE CMP
40 PRINT "RANDOM GRAPHICS": LOCATE 0, 5
50 ATTR 2, 0, B: PRINT "PRESS SPACE BAR TO START.": PRINT:

PRINT
60 PRINT "PRESS BREAK KEY TO STOP.": ATTR 2, 0:

LOCATE 0, 23
70 A$=INKEY$: IF A$="" THEN 70
80 IFASC(A$)=3THEN240
90 HSCREEN 2: PALETTE 0, 0
100 FOR Y=1 TO 5
110 FOR 2=1 TO 6
120 HCOLOR RND(15), 0:

HLINE(RND(318) ,RND(190))-(RND(318) ,RND(190)), PSET
130 CX=RND(200)+60: CY=RND(70)+60: CC=RND(7)
140 HCIRCLE(CX,CY), RND(58), CC
150 HPAINT(CX,CY), (CC+1) AND?, CC
160 NEXT
170 HCOLOR RND(?), 0
180 HX=RND(200): H1=RND(80)+200
190 HY=RND(70): H2=RND(30)+90
200 HLINE(HX,HY)-(H1,H2), PSET, BF
210 NEXT
220 HCLS 0
230 GOTO 100
240 PALETTE CMP: HSCREEN 0: CLS
250 END

Sample Program #30
1 0
20
30
40
50
60

70
80
90
100
110
120
130
140
150
160
170

REM DOODLE
ON BRK GOTO 750
WIDTH 40: PALETTE CMP
PRINT "WELCOME TO COLOR DOODLE. WITH COLOR"
PRINT "DOODLE, YOU CAN DRAW PICTURES ON THE"
PRINT "SCREEN BY PRESSING KEYS. THE KEYS ARE:":
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

(ARROW KEY) ••••••• MOVE ONE DOT"
(SHIFT) (ARROW-KEY)MOVE 10 DOTS"
(CLEAR) ••••••••••• PAINT AN OBJECT"
(SHIFT> (CLEAR) •••• CLEAR SCREEN"
(F1) •••••••••••••• RAISE AND LOWER PEN"
(F2) •••••••••••••• CHANGE INK COLOR"
(LETTERS&NUMBERS). TYPE TEXT ON SCREEN"
(ALT) OR(@) •••••••• STORE A POINT"

PRINT '(CTRL> •••••••••••• DRAW TO STORED POINT"
PRINT' (ENTER) ••••••••••• FLICKER ON/OFF"
PRINT: PRINT: ATTR 2, 0, B:
PRINT "PRESS SPACE BAR TO BEGIN.": PRINT
PRINT "PRESS BREAK KEY TO STOP.": ATTR 2, 0
LOCATE0,23
A$=INKEY$: IF A$="" THEN 200
IF ASC(A$)=3 THEN 750

PRINT:

180
190
200
210
220 HSCREEN 2: PALETTE 0, 0: HBUFF 1, 799: HBUFF 2,307:

230
240

HGET(72,184)-(159,190), 2
XP=160: YP=92: CV=1: PF=0: FF=0: MX=160: MY=92
HCOLOR 2, 0: HLINE(0,182)-(319,182), PSET: HCOLOR 1, 0

275

Sample Programs

250
260
270
280
290
300
310
320
330
340
350

360
370
380

390
400
410
420
430
440
450
460
470
480
490
500
510
520
530

540

550
560
570
580
590

600
610
620
630
640

650
660
670
680

690

700
710

720
730
740
750
760

276

HPRINT(0,23), "PEN-UP": HPRINT(21,23), "COLOR->"
HCOLOR CV, 0: HLINE(224,183)-(317,191), PSET, BF
IF XP<2 THEN XP=317: GOTO 340
IF XP>317 THEN XP=2: GOTO 340
IF YP<2 THEN YP=179: GOTO 340
IF YP>179 THEN YP=2
HCOLORCV,0
IF PF=1 THEN HLINE(FX,FY)-(XP,YP), PSET
FX=XP: FY=YP
HCOLOR 1, 0: HPUT(72,184)-(159,190), 2, PSET
XVS=RIGHT$(" "+STRS(XP-2) ,3):
YVS=RIGHT$(" "+STR$(179-YP) ,3)
PS$= 11 X="+XV$+" Y="+YVS: HPRINT(9,23), PS$
HGET(0,YP-2)-(319,YP+2), 1
HD RAW "BM"+STR$ (INT (XP)) +", "+STRS (INT (YP)) +"; C"+
STR$(IC)+";D2;U2;L2;R4;L2;U2"
IC= (I C+1) AND 7 OR 8
IF FF=0 THEN 420
FOR PN=0 TO 15: PALETTE PN, RND(64)-1: NEXT
AS=INKEYS: HPUT(0,YP-2)-C319,YP+2), 1: IF AS="" THEN 370
KV=ASC(A$)
IF KV=3 THEN 750
IF KV=94 THEN YP=YP-1: GOTO 270
IF KV=10 THEN YP=YP+1: GOTO 270
IF KV=8 THEN XP=XP-1: GOTO 270
IF KV=9 THEN XP=XP+1: GOTO 270
IF KV=95 THEN YP=YP-10: GOTO 270
IF KV=91 THEN YP=YP+10: GOTO 270
IF KV=21 THEN XP=XP-10: GOTO 270
IF KV=93 THEN XP=XP+10: GOTO 270
IF KV=64 THEN MX=XP: MY=YP: HCOLOR CV, 0: HSET(XP,YP):
GOTO 370
IF KV=189 THEN HCOLOR CV,0: HLINE(MX,MY)-(XP,YP), PSET:
GOTO 370
IF KV<>13 THEN 590
FF=(FF+1) AND 1
IF FF=0 THEN PALETTE CMP: PALETTE 0, 0
GOTO 370
IF KV=4 THEN CV=(CV+1) AND 15: HCOLOR CV, 0:
HLINE(224,183)-(317,191), PSET, BF: GOTO370
IF KV<>12 THEN 670
TC=HPOINT (XP, YP): TX=XP
IF XP<160 THEN SV=1 ELSE SV=-1
TX=TX+SV: NC=HPOINT(TX,YP)
IF NC<>TC THEN HCOLOR NC, 0: HLINEC0,182)-(319,182),
PSET: HPAINT(XP,YP), CV, NC: HCOLOR CV, 0: GOTO370
IF TX=2 OR TX=317 THEN 370
GOTO 630
IF KV=103 THEN PF=(PF+1) AND 1 ELSE 710
HCOLOR 2, 0: HLINE(0,184)-(63,190), PRESET, BF:
HCOLOR 1, 0
IF PF=0 THEN HPRINTC0,23), "PEN-UP"
ELSE HPRINT(0,23), "PEN-DOWN": FX=XP: FY=YP: GOTO 310
GOTO 370
IF KV=92 THEN HCOLOR CV, 0:
HLINE(0,0)-(319,181>, PSET, BF: GOTO370
IF KV<32 OR KV>90 THEN 370
TX=INT(XP/8): TY=INT(YP/8): HCOLOR CV, 0
HPRINT(TX, TY), AS: XP=XP+8: GOTO 270
PALETTE CMP: HSCREEN 0: ATTR 2, 0: CLS
END

Sample Programs

Inventory Shopping List
5 CLEAR 20!U: DIM SSC100)

10 REM INVENTORY/SHOPPING LIST

20 C LS
30 PRINT@ 71, "DO YOU WANT TO--"

40 PRINT iii 134, 11 (1) INPUT ITEMS"

50 PRINT iii 166, "(2) REPLACE ITEMS"

60 PRINT iii 198, "(3) ADD TO THE LIST"

70 PRINT@ 230, "(4) DELETE ITEMS"

80 PRINT@ 262, "(5) PRINT ALL ITEMS"
90 PRINT@ 294, "(6) SAVE ITEMS ON TAPE"
100 PRINT@ 326, "(7) LOAD ITEMS FROM TAPE"
110 PRINT @395, "(1-7)";

120 INPUT M
130

140

150

900

1000

1010

1020

103 0

1040

1045

1050

1060

1070

IF M<0 OR M>7 THEN 10

ON M GOSUB 1000, 2000, 1020, 3000, 4000, 5000, 6000
GOTO 1 0

REM

REM INPUT/ADD ITEMS

Y=1

CLS: PRINT@ 8, "INPUT/ADD ITEMS"

PRINT@ 34, "PRESS <ENTER> WHEN FINISHED"

PRINT: PRINT "ITEM" Y;
INPUT SS(Y)

IF S$(Y) =" 11 THEN RETURN

Y=Y+1

GOTO 1 040

1900 REM

2000 REM REPLACE ITEMS

2005 N=0

2010

2020

2030

2040

2050

2060

2900

3000
3005

3010

3020

3030

3035

3040

3050

3060

3070

3080
3090

3100

3900

4000
4010

CLS: PRINT@ 9, "REPLACE ITEMS"

PRINT@ 34, "PRESS <ENTER> WHEN FINISHED"
PRINT: INPUT "ITEM NO. TO REPLACE"; N
IF N=0 THEN RETURN

INPUT "REPLACEMENT ITEM"; SS(N)
GOTO 2000
REM

REM DELETE ITEMS

N=0
CLS: PRINT@ 9, "DELETE ITEMS"

PRINT@ 34, "PRESS <ENTER> WHEN FINISHED"

PRINT: INPUT "ITEM TO DELETE"; N

IF N>Y-1 THEN 3030
IF N=0 THEN RETURN

FOR X=N TO Y-2
S$(X) = SS(X+1)

NEXT X
S$(X)=""

Y=Y-1

GOTO 3000

REM

REM PRINT ITEMS

FOR X=1 TO Y-1 STEP 15

277

Sample Programs

278

4020
4030
4040
4050
4060
4070
4900
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100

FOR z:::x TO X+14
PRINTZ; S$(Z)

NEXT Z
INPUT "PRESS >ENTER> TO CONTINUE"; C$
NEXT X
RETURN
REM
REM SAVE ITEMS ON TAPE
CLS: PRINT@ 135, "SAVE ITEMS ON TAPE"
PRINT@ 234, "POSITION TAPE"
PRINT@ 294, "PRESS PLAY AND RECORD"
PRINT@ 388, "PRESS <ENTER> WHEN READY"
INPUT R$

OPEN "0", #-1, "LI ST"
FOR X=1 TO Y-1
PRINT #-1, S$(X)

NEXT X
CLOSE 11-1: RETURN

5900 REM
6000 REM LOAD ITEMS FROM TAPE
6010 CLS: PRINT "LOAD ITEMS FROM TAPE"
6020 PRINT "POSITION TAPE"
6030 PRINT "PRESS PLAY"
6040 PRINT "PRESS <ENTER> WHEN READY"
6050 INPUT R$
6060 OPEN "I", #-1, "LIST"
6070 FOR X=1 TO Y-1
6080 INPUT 11-1, S$(X)

6090 NEXT X
6100 CLOSE 11-1: RETURN

Speed Reading
HI REM SPEED READING
20 CLS: PRINT@ 32, "HOW MANY WORDS PER MINUTE"

30 INPUT "DO YOU READ"; WPM
40 FOR X=1 TO 23: NEXT Y
60 READ A$: PRINT@ 256, A$
70 FOR Y=1 TO (360/WPM) *460: NEXT Y
80 REMY LOOP SETS LINES/MINUTE
90 NEXT X: END
100 DATA "SCARLETT OHARA WAS NOT BEAUTIFUL"
110 DATA "BUT MEN SELDOM REALIZED IT WHEN"
120 DATA "CAUGHT BY HER OWN CHARM AS THE"
130 DATA "TARLETON TWINS HERE. IN HER FACE"
140 DATA "WERE TOO SHARPLY BLENDED"
150 DATA "THE DELICATE FEATURES OF HER"
160 DATA "MOTHER, A COAST ARISTOCRAT OF"
170 DATA "FRENCH DESCENT, AND THE HEAVY"
180 DATA "ONES OF HER FLORID IRISH FATHER"
190 DATA "BUT IT WAS AN ARRESTING FACE,"
200 DATA "POINTED OF CHIN, SQUARE OF JAW"
210 DATA "HER EYES WERE PALE GREEN"
220 DATA "WITHOUT A TOUCH OF HAZEL,"

Sample Programs

230 DATA "STARRED WITH BRISTLY BLACK"
240 DATA "LASHES AND SLIGHTLY TILTED"
250 DATA "THE ENDS, ABOVE THEM, HER THICK"
260 DATA "BLACK BROWS SLANTED UPWARDS,"
270 DATA "CUTTING A STARTLING OBLIQUE LINE"
280 DATA "IN HER MAGNOLIA-WHITE SKIN -- THAT"
290 DATA "SKIN SO PRIZED BY SOUTHERN WOMEN"
300 DATA "AND SO CAREFULLY GUARDED WITH"
310 DATA "BONNETS, VEILS, AND MITTENS"
320 DATA "AGAINST HOT GEORGIA SUNS"

Memory Test
This program uses an array to test both yours and your computer's memory.

5 DIM A(7)
10 PRINT "MEMORIZE THESE NUMBERS"
15 PRINT "YOU HAVE 10 SECONDS"
20 FOR X=1 TO 7
30 ACX)= RND(100)
40 PRINT A(X)
50 NEXT X
60 FOR X=1 TO 460•10: NEXT X
70 CLS
80 FOR X=1 TO 7
90 PRINT "WHAT WAS NUMBER" X
100 INPUTR
110 IF A(X)=R THEN PRINT "CORRECT" ELSE PRINT "WRONG -

IT WAS" A (X)

120 NEXTX

Sorting
1 CLS: CLEAR 1000: DIM T$(100), A$(100), S$(100),

M$(100), 2(100)

2 PRINT "POSITION TAPE -- PRESS PLAY AND RECORD?
4 INPUT "PRESS <ENTER> WHEN READY"; R$
8 REM
9 REM OUTPUT TO TAPE
10 OPEN "0", #-1, "BOOKS"

15 CLS: PRINT "INPUT YOUR BOOKS -- TYPE <XX> WHEN
FINISHED"

20 INPUT "TITLE"; T$
25 IF T$= "XX" THEN 50

26 INPUT "AUTHOR"; A$
28 INPUT "SUBJECT"; S$
30 PRINT #-1, T$, A$, S$
40 GOTO 1 5
50 CLOSE #-1

60 CLS: PRINT "REWIND THE RECORDER AND PRESS PLAY"
70 INPUT "PRESS <ENTER> WHEN READY"; R$
74 REM
76 REM INPUT FROM TAPE
78 B = 1

279

Sample Programs

80 OPEN "I", #-1, "BOOKS"

85 IF EOF(-1) THEN 120

90 INPUT #-1, T$(8), A$(8), S$(8)

95 8=8+1

110 GOT085

120 CLOSE #-1

490 PRINT
500 INPUT "SORT BY (1) TITLE (2) AUTHOR OR (3)

SUBJECT"; A

510 IF A>3 OR A<1 THEN 500

520 ON A GOSUB 1000, 2000, 3000
530 GOSUB 4000

540 PRINT

550 FORX=1TOB-1

560 PRINT "TITLE:" T$(Z(X))

570 PR INT "AUTHOR: "A$ CZ CX))

580 PRINT "SUBJECT: "S$CZ(X))

590 NEXT X

600 PRINT: GOTO 500

800 REM

900 REM BUILD M$ ARRAY

1000 FOR X=1 TO B-1

1010 M$(X) = T$(X)

1020 NEXT X

1030 RETURN

2000 FOR X = 1 TO B-1
2010 M$(X) = A$(X)

2020 NEXT X

2030 RETURN

3000 FOR X = 1 TO B-1

3010 M$CX) = S$CX)

3020 NEXT X

3030 RETURN

3900 REM

4000 REM SORT ROUTINE

4005 T=1

4010 X=0

4020 X = X+1

4030 IF X>B-1 THEN RETURN

4040 IF M$(X) = "22" THEN 4020

4050 FOR Y=1 TO B-1

4060 IF M$(Y) < M$(X) THEN X=Y

4065 Z(T) = X

4080 NEXT Y

4090 M$(X)="ZZ"

4100 GOT04010

280

WORKSHEETS

Low-Resolution Text Screen Worksheet (32 x 16)

0 1 11111111222222222233

O ► "·i--,--1 ,--2 ,--3 ,--4 ,--5 ,--6 ,--7 ,--8 ,--9 ,--0 ,--,--2 -.---3 ,--4 ,--5 ,--6 ,--7 ,--8 ,--9_0_1_2--,-:3_4--.--:5--.-:6--.-:7--.-:8:.__::9:.__::0:...,_:_1

32

64

96

128

160

192

224

256

288

320

352

384

416

448

480

281

Worksheets

Low-Resolution Text Screen Worksheet (64 x 32)

0 11111222223333344 4445555566
0 ►' 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2

2
t-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-++-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-++-+-+-+-+-+-+-------

4
t-t-t-+--t-+-t-+-t-+-t-+-t-+-t-+-t-+-t-+++++++-+-+-+-+-+-++++--+-+--+-+-++--++-++-t

6
l-+-!-+--1-+-1-+-t-+-t-+-t-+-t-+-t-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-++-+-+-+-+-+++++-++-+-+-+-+-++-+-+--+-++-+-++--++-++-1

8 t-+-+-++++++-+-+++-++++++++++++++++++++++++-++++++++-++-++++++++-++-+-++-+-+-++-f

10
t-+-+-+--+-+-+-++-++-+-+-++-++-+-+++++++++-+--+-++++-++-+-+-+-++++++-+-+-+-+-+-+-+-+-+-+-+--+-+--+-+-4-+-4-1-+-4

12
H-+++++++++++++++++++++++++++++++++-++-+++++++-+-+-+-+++++-+-1+-++-+-+-+-H-++-f

14 t-+-+-++++++-+-+++++++++++++++++++++++++-++-++++++++-++-+++++-+-++-+--+-+-++-+-+-++-1

16
1-+-+-+-1-+-1-+--+

18
H-+-t-++-+-++++++++++++++++++++++++++++-++-+++-+-+-+-++-++--+++-+-+-+-+--H-+-+-++-H-+-+-1

20 H-+++++++++++++++++++++++++++++++++++-+++++++-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-H-+-+-1

22
t-++++++++++++++++++-+++-++-+++-++-++-++-++-+-++++-+-+-+-+-+-+-+-+-+-+-+-t--H---H--+-i-+-i--t-i-+-H

26
t-++++++++++++++++-t-++++++-++++++++++-+-+-+-+-+-+-+-++-+-+-+-+-+-+-++-t+-t---+-t---+-t--t-+-H-+-H

28
1-+-+-t-+-t--t-+-+-+-t-+-+-t-+-+-+-+-+-+-+-+-+-+-+++-+-+-+-+-+-+-+-+++++-+--+-+-+-++-+--+-+--+-+-++-++-+-+-+-+-+-+-+-+--+-+-l

30
1-t-+-t-+-+-t-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-t-+-+-+-+-+-+-+-+-+-+-+++++++++-+--+-+-+-+-++-+-+-+-+-+-+-+-+-++-+-+--+-+-l

282

Worksheets

High-Resolution Text Screen Worksheet (40 x 24)

13

1

'

10

20

1

22

23

0 1 2 3 J s t 8 9 1(11 12 lJ 14 1. 16 II 18 JC ?(2, ?2 J " .' 2[18 IS j[31 32 33 3' 3' 3(37 18 JS

283

Worksheets

High-Resolution Text Screen Worksheet (80 x 24)

"'

"'

"'

:,,

;;;

"

"

"
}-- --+-+--+---+--+---I---+--+ ---

284

Worksheets

Low-Resolution Graphics Screen Worksheet (128 x 96)

1 1 1 1 1 1 1 1
1 1 2 2 2 3 3 4 4 4 5 5 6 6 6 7 8 8 8 9 9 0 0 0 1 1 2 2 2

0 4 8 2 6 0 4 8 2 6 0 4 8 2 6 0 4 8 2 0 4 8 2 6 0 4 8 2 6 0 4 7
0

8

12

16

20

24

28

32
--4-r -,

36

40

44
-1-Ll--j

t+

48

52 -1,

-+~a u
56 •I -~
60

64
+,-

68

72

76 1-1

80

84

88

92

95

285

I\J
0)
Cl)

0

1

2
2
2
3

3

4
4

5

5
5,
6
6

~

8
8
8
9
9

WO

1~
1~

TI2

1W
120
~4
~8
G2
1~
1~

1M

MB
1~
156
100
ffi4 ,~
1n
,re
IBO
ffi4
ffi8

1 1 1 1 1 1 1 1 1 1 1 1 1
O 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9 9 0 0 0 0 0 1 1 1 1 1 2 2 2
l 2 c 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 ~

.-- ~
0

(/)

=e
::::,-
([)

I
([)

::D ci:l"
('D
u,
2.
C --■ 0
::::s
C')

ol
"'tJ
::r
-■ (")
u,
en
(")
~
('D
('D
::::s

~
~

~
::r
('D
('D --.....
I\)
0)

><
CD
I\) -

Worksheets

Low-Resolution Graphics Screen Worksheet (256 x 192)

lelli- ---z•--+++ --I------!-------
-- - _........__f-.--.------r---·-~-1---1-~~ •-

---+-+-+-+

!!I c----·1···•t·····t···r·i -- -- -- - -- · :-··c----t-+--+-·-1--,----c--
···-·F- - · --- --'------4-------1--- ---+·-+-·-'--·+-.+- --1--1--r~'···'--·t--+-+-+

+-·+--+---'-·-+--·L'-+ --t--

-- --

r

.. =t-.. f-- ·- ••

.. ::I. __
·---~---

I-• ·•·r-

•·-,-

: ...;....+-+-+-+--t ... --- ----· -,-+--··!: ., :f =-~r=~~j-=~; ___ ;__
fH:':±.::-~.L. :. ••r·-H-·- -•··- · -= :=~-r =·t : ·-=1::. :=-::-,. - .. ··•I•· ..•. __ .::::=
al~•·-+-•---····-••-+··, ... "·-•···'··· •··~-·:., -_ ·•-t·=,-·-·--'-

4
··. : ·. _f .-. -.. ·:.t.··.·.·.· .. • =.:·:· •:·.·.· .. ::-•l•·.· .. ···t-···•• •·• ·-

!f:t::,:: - l- I . - + . 1 .:_.,·_,·_-+·:·:·_,.-· .. ·, ··•··· ... , ... _

----f-1--· I···

---1---1----- -· ·•-f-- -- -1--- ···f--!---1--

·-· ·--- ---·- --!-• + ···f-·•+-+-+--+- .. f •• - -- r--
+--t-··+··+~-+-+--+··•l'-f--+-+-- - . ··- . . --

: ~·:=·-==:-:-~ :=: =~1~t=:'. :=-~::: :: ·: ::: - .. ;· L ... ::: :··:: .:r1•=1'•·
1
: .. i:=: _: \;,.-. :··::··· [t:,::

!-J, i 1 ··-·- ••• + + ,. -t-·- I f--

-~--~---- -- , --- . - - ----i----------- -- -r--· --+·+--+-+-~-+
- --~-- ,.. . •·-+-+-+··! .. ···~ - .. \ ·+-+-+--+ I t .• L. .. I .

..

·--·••-·

I .
I

? -->--1--->-- ... ---~----r-- - .. -1-- --r--• I -- - --- .

I

-f-•··· ! -+-+--+--+· --,-f--

i
t-·-•--

c" '--'-'-1 +-+-·t-++-+-+-+·+·-t-••- -- +--- --- ~- -~ - ·· f'+-•1---- --- -- ·-- ·•--t-t-·- --- --- --- -·· f---· ---!--,,-f···t--+· I···, ·+-+-+··+·-+-t·-1

: :.::':=:'=:=:=::+-_;-_-_;-:_.:;:·-+·-+--l'-+-+·-+-+--+--l--t-+-+-+-+-· :. :t- ·----=· ·-+··i+·:_~+_-""T+.:.~'=._,_-,. .. +.~-+-+ __ .,_t-t .. ~_., .. ·.·-+----+

:e=•··-'·· i'"' ~1-- ·-

f", I -,-..-..· ,_ l--t-·➔-+-+-+--1

;1t·----····
-·····

;

: l---+-
f·· ····f---

ii! :I: ~. ·''·•-f·-Cf--f-.jf-

:

;
-+--+--+·-+--+-+--+- +-·+·-+-+--+--,~+-+-+-+-+-+--+--+--+--+--+-+-+--+-+_-+-_+_--+_· -_-,,·_··.··1.·_+ +=:=:= ... -_,.·-·-+-· ·.·.,· .. ··-+.

'I' -~~+-+-+-+--+--+--+--+--+-+-+-+--+--,-f--+--+-+-
::i -· -·-
SI f-+--+-+-+-+--+--+--+--+--+-+-+-+-t--,--,1--c>-t--+-+-~:-+!--+--,,-..+--+-+---+·-+-+-~-+-+-+--l-,-..t-+--+-+-+--+--t--t--+--+---+
~ l-l-t-+-+-+-++-+--+--+-+-+-+--+-+--11-1-1--+-+-~+-+-t-·+-+
~ f--f---,f---,f--'f--jf--'f---,f-t- ·-+-+-+-+'--ti--t--t--t-t-t-·i...l-.--~-1- - -re ! !

+--+-+--+-·+-+-++-+--+-+-+-+·-+-t-f-·f--r---
·· r----

a(, I -+--+-+--+·• - .. I- -- ··+-+--+-+-+-+-+-,+-l-+-+-+-+-

~ r.~::::+-·· ·-+-+ -+-+-·+ +·+·+-t--+---+--+ -· ~ -- .. - - --~ -~••·+·+-+--+--+--+ L
j:1:: ··t···t·-+--+--+-+-+· ··-·· t-+-+-+--1-f-.+ ·-·

~ ~ ~ ~ ~ re ~ ~ i : ~ ~ ~ s ~ 8 ~ ~ ~ i ~ ~ ~ § 9 S _ _ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

287

Worksheets

High-Resolution Graphics Screen Worksheet (320 x 192)

i

288

BASIC CHARACTER CODES

BASIC uses a code to represent each character that can be typed on the keyboard or displayed
on the text screen. This section lists the codes that BASIC uses.

BASIC Codes 0-127/
Low- and High-Resolution Text Screens
For low- and high-resolution text screens. BASIC uses Codes 0-127 to represent the common
alphanumeric characters. These codes adhere to a standard, called ASCII codes, that most
small computers use

You can generate these codes In two ways: by typing the keyboard character m by entering
the CHR$ function. For example, you can generate the code tor the letter A by typing the
letter A or by typing PRINT CH R $ < 6 5) _l;_NJ"ER~. Both ways cause BASIC to display the letter
A on your screen.

To type a lowercase character, you must first enter BASIC's upper/lowercase mode by pressing
:sRrnJCJL. (Press :sHCF):J and, while holding down rs-HT£]=.,, press ~) Then, type the
keyboard character. For example, type an A to generate the code for Hie letter a.

BASIC displays a lowercase character differently depending on which kind of text screen you
are using. If you use the low-resolution screen, BASIC displays the character in uppercase
with reversed colors. (For example, IAI .) If you use the high-resolution screen. BASIC displays
true lowercase. (For example, a)

Character

I B.REAJ< !

~
r::-:__;

::n
(G)...1::A}l

' E_N-TJ;_R ;

Space bar
!

$

O/o
&

Table 7.1 I BASIC Codes 0-127/
Low and High-Resolution Text Screens

Decimal Code Hexadecimal Code

03 03
8 08
9 09

10 OA
12 oc
13 OD
32 20
33 21
34 22
35 23
36 24
37 25
38 26
39 27
40 28
41 29
42 2A
43 2B
44 2C
45 20
46 2E
47 2F

289

Basic Character Codes

Character Decimal Code Hexadecimal Code

0 48 30
1 49 31
2 50 32
3 51 33
4 52 34
5 53 35
6 54 36
7 55 37
8 56 38
9 57 39

58 3A
59 3B

< 60 3C
61 3D

> 62 3E
? 63 3F
@ 64 40
A 65 41
B 66 42
C 67 43
D 68 44
E 69 45
F 70 46
G 71 47
H 72 48

73 49
J 74 4A
K 75 48
L 76 4C
M 77 40
N 78 4E
0 79 4F
p 80 50
0 81 51
A 82 52
s 83 53
T 84 54
u 85 55
V 86 56
w 87 57
X 88 58
y 89 59
z 90 SA

290

Basic Character Codes

Character Decimal Code Hexadecimal Code

((ISHIFTIGJ} 91 5B
\ (1 SHIFTIICLEAR)) 92 5C

l (ISHIFTIG} 93 50
t 94 5E

._ (ISHIFTJCD) 95 5F
A 96 60
a 97 61
b 98 62
C 99 63
d 100 64
e 101 65
f 102 66
g 103 67
17 104 68

105 69
j 106 6A
k 107 6B

108 6C
m 109 60
fl 110 6E
0 111 bF

11 112 70
q 113 71

114 72
s 115 73

116 74
u 117 75
V 118 76
w 119 77
X 120 78
y 121 79
L 122 7A

123 7B
124 7C
125 70

rv 126 7E
127 7F

291

Basic Character Codes

292

BASIC Codes 128-255/
Low-Resolution Text Screen
For its low-resolution text screen, BASIC uses Codes 128-255 to represent its own, unique
graphic characters. To generate a graphics character, use the CHR$(code) function. You can
compute code with this formula:

code= 128 + 16 *(c-1) + pattern

pattern is the nurnher of the graphics pattern (ldod in the table below) you want to display.
c is the color you want to use.

For example, assume that you want to display a large blue box. As shown in the table below,
the pattern for a large box is 15. And, assuming your computer's palette is set to the standard
colors, you can specify the color blue on a low-resolution text screen as Color 3. To display
a large blue box, type:

PRINT CHR$(128+16*(3-1)+15)

Character

~
~
~

-­
IJ
~
~

Table 7.2 BASIC Codes 128-255/
Low-Resolution Text Screen

Pattern

0

2

J

4

5

6

7

Character

-­
~
[I
I~

-_-_l
[.
[~]

Pattern

8

9

10

11

12

13

14

15

Basic Character Codes

Codes 128-159/
High-Resolution Text Screen
For its high-resolution text screen, BASIC uses Codes 128-159 to represent its own, unique
foreign and special characters. To generate a foreign or special character, use the CHR$(code)
function. For example, you can type PRINT c HR$< 13 0) : ENTER to display an "e" with an
accent on the high-resolution text screen.

Table 7.3 BASIC Codes 128-159/
High-Resolution Text Screen

Character Code Character Code

C 128 ,5 144

IJ 129 i 145

~ 130 [146

:a 131 0 147

a 132 I) 148

a 133 0 149

a 134
,.
u 150

0 135 u 151

~ 136 © 152

e 137 d 153

e 138 0 154

l 139 :~ 155
,.

,£ 1 140 156

.B 141 ± 157

A 142 ~ 158
,\

143 f 159 H
I

293

COLOR CODES

The color computer has 64 colors. Use this table to record names for each of the colors as
they appear on your display. Type in and run Sample program #23. Eight colors will appear
on the display at a time. First 0-7, then 8-15 on through 56-63. As each screen full of colors
appears, write the name of each color on the chart below.

00 16 32 48

01 17 33 49

02 18 34 50

03 19 35 51

04 20 36 52

05 21 __ 37 53

06 22 38 54

07 23 39 55

08 24 40 56

09 25 41 57

10 26 42 58

11 27 43 59

12 28 44 60

13 29 45 61

14 30 46 62

15 31 47 63

295

PALETTE SLOTS

The color computer has a palette containing 16 slots. This palette can hold 16 colors at a
time, and you can choose among 64 codes, listed in the previous section, to store in the palette.

When you enter a PALETTE CMP or PALETTE RGB command or when you first start BASIC
(in which case, BASIC automatically enters a PALETTE CMP command), BASIC creates a
standard palette. It does this by storing 16 standard codes in the palette.

BASIC's standard palette is listed in the table below. By using the standard palette, you can
run programs written in earlier versions of BASIC.

You can change the standard palette by using the PALETTE command. For example PALETTE
2, 30 stores Code 30 in Slot 2.

Table 7.5 BASIC's Standard Palette
(PALETTE CMP or PALETTE RGB)

Slot Color CMP Code RGB Code

0 Green 18 18
Yellow 36 54

2 Blue 11 9
3 Red 7 36
4 Butt 63 63
5 Cyan 31 27
6 Magenta 9 45
7 Orange 38 38
8 Black 0 0
9 Green 18 18
10 Black 0 0
11 Buff 63 63
12 Black 0 0
13 Green 18 18
14 Black 0 0
15 Orange 38 38

297

BASIC COLORS

Each screen uses different palette slots to produce:

• The foreground and background colors.

• The colors you specify, such as the "3" in CLS3.

For example, the low-resolution text screen uses Slot 2 to produce Color 3. The high-resolution
text screen uses Slot 2, 3, or 11 to produce Color 3.

This section shows the palette slots that each screen uses to produce the foreground and
background colors and the colors you specify.

Low-Resolution Text Screen
Foreground and Background Colors: The slots that produce the foreground and background
colors depend on which character the screen is displaying and what that character's code
is. (See "Character Codes" to find out each character's code.)

For example. if the screen is displaying a common alphanumeric character (Code 0-127),
Slot 12 produces the foreground color and Slot 13 produces the backQround color. If the
screen is displayinQ Graphics Character 129, Slot O rroduces the foreground color and Slot
8 produces the background color.

The Colors You Specify: The slot that produces your color specification is one less than the
specification For example, Slot 2 produces Color 3.

Table 7.6 BASIC's Use of the Palette
Low-Resolution Text Screen

Color 0 Slot 8
Color 1 Slot 0
Color 2 Slot 1
Color 3 Slot 2
Color 4 Slot 3
Color 5 Slot 4
Color 6 Slot 5
Color 7 Slot 6
Color 8 Slot 7

FOREGROUND:
Codes 0-127 Slot 12
Codes 128-143 Slot 0
Codes 144-159 Slot 1
Codes 160-175 Slot 2
Codes 176-191 Slot 3
Codes 192-207 Slot 4
Codes 208-223 Slot 5
Codes 224-239 Slot 6
Codes 240-255 Slot 7

BACKGROUND:
Codes 0-127 Slot 13
Codes 128-255 Slot 8

299

BASIC Colors

300

High-Resolution Text Screen
Foreground and Background Colors: Slot 8 produces the foreground color and Slot O produces
the background color. Both slots are default slots; you can change them with the ATTA or
CLS commands

The Colors You Specify: The slot that produces the color you specify depends on whether
you specify the color with CLS, ATTA as the foreground, or ATTA as the background.

For example, the slot that produces Color 3 could be:

• Slot 2, when specified with CLS.

• Slot 11, when specified with A TTR as the foreground.

• Slot 3, when specified with A TTR as the background.

Color 0
Color 1
Color 2
Color 3
Color 4
Color 5
Color 6
Color 7
Color 8

FOREGROUND:
BACKGROUND:

Table 7.7 BASIC's Use of the Palette
High-Resolution Text Screen

ATTA
CLS FOREGROUND

Slot 8
Slot 0 Slot 9
Slot 1 Slot 10
Slot 2 Slot 11
Slot 3 Slot 12
Slot 4 Slot 13
Slot 5 Slot 14
Slot 6 Slot 15
Slot 7

Slot 8
Slot O

ATTA
BACKGROUND

Slot 0
Slot 1
Slot 2
Slot 3
Slot 4
Slot 5
Slot 6
Slot 7

BASIC Colors

Low-Resolution Graphics Screen
Foreground and Background Colors: The slots that produce the foreground and background
colors depend on which PMODE and color set you are using. For example, if you are using
a 2-color PMODE with Color Set 0, Slot 9 produces the foreground color and Slot 8 produces
the background color.

Regardless of which PMODE and color set you are using, all the slots that produce the
foreground and background colors are default slots; you can change them with the COLOR
command.

The Colors You Specify: The slot that produces the color you specify depends on which PM ODE
and color set you are using. For example the slot that produces Color 3 could be:

• Slot 9, in a 2-color PMODE with Color Set 0

• Slot 11, in a 2-color PMODE with Color Set 1

• Slot 6, in a 4-color PMODE with Color Set 0

• Slot 2, in a 4-color PMODE with Color Set 1

Color 1
Color 2
Color 3
Color 4
Color 5
Color 6
Color 7
Color 8

FOREGROUND
BACKGROUND

Table 7.8 Color Specifications
Low-Resolution Graphics Screen

2-CLR PMODE
CLR SET 0 CLR SET 1

Slot 9 Slot 11
Slot 8 Slot 10
Slot 9 Slot 11
Slot 8 Slot 10
Slot 9 Slot 11
Slot 8 Slot 10
Slot 9 Slot 11
Slot 8 Slot 10

Slot 9 Slot 11
Slot 8 Slot 10

4-CLR PMODE
CLR SET 0 CLR SET 1

Slot O Slot 4
Slot 1 Slot 5
Slot 2 Slot 6
Slot 3 Slot 7
Slot 0 Slot 4
Slot 1 Slot 5
Slot 2 Slot 6
Slot 3 Slot 7

Slot 3 Slot 7
Slot 0 Slot 4

301

BASIC Colors

302

High-Resolution Graphics Screen
Foreground and Background Colors: Slot 1 produces the foreground color and Slot O produces
the background color. Both slots are defaults; you can change them with the HCOLOR
command.

The Colors You Specify: The slot that produces the color you specify depends on which
HSCREEN setting you are using. For example, the slot that produces Color 3 could be:

• Slot 1, in a 2-color HSCREEN.

• Slot 3, in a 4-color or 16-color HSCREEN.

Color 1
Color 2
Color 3
Color 4
Color 5
Color 6
Color 7
Color 8
Color 9
Color 10
Color 11
Color 12
Color 13
Color 14
Color 15

FOREGROUND: Slot 1
BACKGROUND: Slot 0

Table 7.9 BASIC Use of the Palette
High-Resolution Graphics Screen

2-CLR
HSCREEN

Slot 1
Slot 0
Slot 1
Slot 0

4-CLR
HSCREEN

Slot 1
Slot 2
Slot 3
Slot 0

16-CLR
HSCREEN

Slot 2
Slot 3
Slot 4
Slot 5
Slot 6
Slot 7
Slot 8
Slot 9
Slot 10
Slot 11
Slot 12
Slot 13
Slot 14
Slot 15

BASIC MUSICAL TONES

Number Note

C

2 C#/D-

3 D

4 E-/D#

5 E/F-

6 F/E#

7 F#/G-

8 G

9 G#/A-

10 A

11 A#/B-

12 B

303

MATHEMATICAL FORMULAS
WORTH TWO IN THE BOOK ...

Quantity

Total Degrees of a Tnangie

Solve for Area
Given S1ae a. Angles B
and C

G!Ven Sides a b ana c

Law Smes

-

Law of Consnes

~ -

Ldw of

Gn en Th•r'e S1oes
Sohe

Ouadrat1·c
Eoua/!ons

Algebraic

Standard Formulas BASIC Statement

180° =A+ B + C TTL =AA+ AB+ AC

A= 180-(B + CJ AA = 180 - 1AB + AC) [then convert AA. AB and
AC to

Area =
a2 SIil B · sin C

2 sill A AREA = SA t 2'SIN(AB)'SIN(AC)/(2'SIN(AA))

s = ½(a+ b + c) S = (SA + SB + SCi2

Area = { s(s - a)(s - b)(s - c) AREA = SOR(S'!S - SA)'(S SB) *(S - SC))

iJ SIil A smA SA 'SR
- ~ -
b = s111 B or 8 sm 8. b

--- -- -

a2 ~ b2 + c2 - 2/Jc - cos 11 or SA - SOR1SfJ 1 2 SC t -2'SB'SC'COS(!\A))

a - { IJ2+
c2 2hc · cos A

- - --- -~

a-c tan !2(/1 C) REM =
-

a+c = tan 12(A + C) or } - SC! iS~ + SC! 'TAN((AA + AC)/2)
a-c

tan V?(A - C) = --
a+c

- tan V?(A ± C)

s = 1/z(a + +c

r = t (s - a)(s - b)(s - c)

r
A 2 arc/an (--)

s a

ax2 +bx+ c = 0

-b ± { b2-4ac
X =

2a

M=a•,

1
-

a• = a·

og ,Y = y · log x

log xy = log x + logy

' X
1ogy = logx-logy

AB

SA

AC

s = +SB+ SC!2

P = SORr1S - SA! ·1s - SB) '(S SC)!S)

AA 2'ATN(R{S- SAi)

PEM A 'X t 2 + 8 'Y + C = 0
Z = Bt2-4"J'C

X1 = (- B + SQR(Z!)/(2 'A) 'IF Z> = 0
X 2 = (- 8 - SOR(ZiY(2*A) 'IF Z> = 0

Z = IA I X1 t Y or Z = A l(X*Y)

Z=A!(-X; or Z = !/(A IX)

Z = LOG(X I n or Z = YWG(X)

Z = !.OG!X'r; or Z = LOG(X) + LOG(Y)

Z = LOG(XY) or Z = LOG(X) - LOG(Y)

Side a = SA 1s1de opoos:te Angle A)
Side b = SB (side ro Angle Z)
Side c = SC
Angle A = AA
Angle 8 = AB
Angle C = AC

305

DERIVED FUNCTIONS

Function Expressed In Terms of
Extended Color BASIC Functions.

Function x is in radians.

SECANT SEC(X) = 1/COX(X)

COSECANT CSC(X) = 1/SIN(X)

COTANGENT COT(X) = 1/TAN(X)

INVERSE SINE ARCSIN(X) = ATN(X/SQR(-X'X+1))

INVERSE COSINE ARCCOS(X) = -ATN(X/SQR(- X 'X + 1)) + 1.5708

INVERSE COSECANT ARCCSC(X) = ATN(1/SQR(X'X-1))t(SGN(X)-1)'1.5708

INVERSE COTANGENT ARCCOT(X) = -ATN(X) + 1.5708

HYPERBOLIC SINE SINH(x) - (EXP(X)- EXP(-X))/2

HYPERBOLIC COSINE' COSH(X) = (EXP(X) + EXP(- X))/2

HYPERBOLIC TANGENT TANH(X) = - EXP(- X)l(EXP(X) + EXP(- X))' 2 + 1

HYPERBOLIC SECANT SECH(X) = 2/(EXP(X) + EXP(- X))

HYPERBOLIC COSECANT CSCH(X) = 2/(EXP(X)- EXP(- X))

HYPERBOLIC COTANGENT COTH(X) = EXP(-X)/(EXP(X)- EXP(- X)) *2 + 1

INVERSE HYPERBOLIC SINE ARCSINH(X) = LOG(X+SQR(X'X+1))

INVERSE HYPERBOLIC COSINE ARCCOSH(X) = LOG(X+SQR(X'X-1))

INVERSE HYPERBOLIC
TANGENT ARCTANH(X) = LOG((1 +X)/(1-X))/2

INVERSE HYPERBOLIC SECANT ARCSECH(X) = LOG((SQR(-X'X+1)+1)/X)

INVERSE HYPERBOLIC
COSECANT ARCCSCH(X) = LOG((SGN(X)'SQR(X'X+1)+1)/X)

INVERSE HYPERBOLIC
COTANGENT ARCCOTH(X) = LOG((X + 1)/X.,. 1))/2

307

VALID INPUT RANGES

Inverse sine -1 < X <
Inverse cosine -1 < X < 1
Inverse secant X < -1 or X > 1
Inverse cosecant X < -1 or X > 1
Inverse hyperbolic cosine X > 1
Inverse hyperbolic tangent X * X <
Inverse hyperbolic secant 0 < X <
Inverse hyperbolic cosecant X <> 0
Inverse hyperbolic cotangent X*X >

Certain special values are mathematically undefined, but our functions may provide Invalid
values:

TAN and SEC of 90 and 270 degrees
COT and SCS of O and 180 degrees

ror example, TAN(1.5708) returns a value but TAN(90* .01745329) returns a DIVISION BY
ZERO error 90* 01745329 = 1.5708

Other values that are not available from these functions are.

ARCSIN(-1) = - Pl/2
ARCSIN(1) = Pl/2
ARCOS(- 1) = Pl
ARCCOS(1) = 0
ARCSEC(-1) = - Pl
ARCSEC(1) = 0
ARCCSC(- 1) = - Pl/2
ARCCSC(1) = Pl/2

Please note that the above information may not be exhaustive.

309

MEMORY MAP

Decimal Address Contents Hex Address

0-393215 Unused by BASIC 0-5FFFF

393216-425983 Hires graphics 60000-67FFF

screen memory

425984-434175 Hires GET/PUT 68000-69FFF
buffer memory

434176-442367 Secondary stack area 6A000-6BFFF
442368-450559 Hires text screen 6C000-6DFFF

Screen memory
450560-458751 Unused by BASIC 6E000-6FFFF
458752-459775 System use 70000-703FF
459776-460287 Standard text 70400-705FF

screen memory

Standard graphics screen memory

460288-461823 Page 1 70600-70BFF
461824-463359 Page 2 70C00-711FF
463360-463359 Page 3 71200717FF
464896-466431 Page 4 71800-71DFF
466432-467967 Page 5 71 E00-723FF
467968-469503 Page 6 72400-729FF
469504-4 71 039 Page 7 72A00-72FFF
471040-472575 Page 8 73000-735FF
472576-491519 Program and variable 73600-??FFF

storage
491520-499711 Extended Color BASIC 78000-79FFF
499712-507903 Color BASIC 7A000-7BFFF
507904-51 6095 Cartridge ROM 7C000-7DFFF
516096-523775 Super Extended BASIC 7E000-7FDFF
523776-524031 Secondary vectors 7FE00-7FFFF
524032-524287 Input/output 7FF00-7FFFF

311

COLOR COMPUTER
LINE PRINTER VARIABLES

Hexadecimal Decimal Initial Value
Address Address Hex Dec

LPTBTO Baud

MSB 0095 149 00 0
LSB 0096 150 57 87

LPTLND Line Delay

MSB 0097 151 00 0
LSB 0098 152 01

LPTCFW Comma Field Width

0099 153 10 16

LPTWID Line Printer Width

009B 155 84 132

LPTPOS

009C 156 00 00

Your computer's software uses the following initial conditions

• The baud rate is 600

• The printer width is 132 columns

• The printer generates a busy output when not ready

• The printer automatically executes a carriage return at 132 columns.

The RS-232 Interface uses a four-pin DIN connector. A diagram of the Pin out is shown in
your introduction manual.

Pin 4 is the computer output to the printer. Pin 3 is ground. Pin 1 is not used for a printer.
Pin 2 should be connected to the busy output (or status line) of the printer. If your printer
does not provide a status indication, then this line must be connected to a positive voltage
of greater than 3 volts. This tells the computer that the printer is ready at all times. In addition,
the line delay variable should be set to the proper value.

313

Color Computer Line Printer Variables

314

The following list of alternate values for the line printer variables is provided as an aid in
interfacing nonstandard printers.

Baud Rate Decimal Value (msb,lsb) Hexadecimal Value

120 baud 458 (1,202) 01CA

300 baud 180 (0, 180) OOBE
600 baud 87 (0,87) 0057
1200 baud 41 (0,41) 0029
2400 baud 18 (0, 18) 0012

Line Delay Decimal Value (''' ") Hexadecimal Value
(seconds)

.288 64 (0,64) 4000

.576 128 (0, 128) 8000
1.15 65535 (255,255) FFFF

Line Width Decimal Value Hexadecimal Value
(characters/line)

16 16 10

32 32 20
64 64 40
255 255 FF

The last comma field variable should be set to the width value~ the comma field width. (The
comma field width normally stays at 16.)

In Color BASIC, the output format to the printer is 1 start bit, 7 data bits (LSB first). and 2
stop bits with no parity.

ROM ROUTINES

The Color BASIC ROM contains many subroutines that can be called by a machine-language
program. Each subroutine will be described in the following format

NAME - Entry address
Operation Performed
Entry Condition
Exit Condition

Note: The subroutine NAME is only for reference. It is not recognized by the Color Computer.
The entry address is given in hexadecimal form; you must use an indirect jump to this address.
Entry and Exit Conditions are given for machine-language programs.

BLKIN = [A006]
Reads a Block from Cassette

Entry Conditions
Cassette must be on and in bit sync (see CSRDON). CBUFAD contains the buffer address.

Exit Conditions
BLKTYP, which is located at 7C, contains the block type

0 = File Header
1 = Data
FF = End of File

BLKLEN, located at 7D, contains the number of data bytes in the block (0-255).
Z* 1,A CSRERR = 0 {if no errors).
Z = 0,A = CSRERR = 1 (if a checksum error occurs).
Z = 0,A = CSREER = 2 (if a memory error occurs).

Note: CSRERR = 81
Unless a memory error occurs, X = CBUFAD + BLKEN. If a memory error occurs, X points
to beyond the bad address. Interrupts are masked. U and Y are preserved, all other modified.

·z 1s a flag in the Condition Code (CC) register.

BLKOUT = [A008]
Writes a Block to Cassette

Entry Conditions
The tape should be up to speed and a leader of hex 55s should have been written if this
is the first block to be written after a motor-on.
CBUFAD, located at 7E, contains the buffer address.
BLKTYP, located at 7C, contains teh block type.
BLKLEN, located at 70, contains the number of data bytes

Exit Conditions
Interrupts are masked. X = CBUFAO + BLKLEN All registers are modified.

WRITLDR = [AOOC]
Turns the Cassette On and Writes a Leader

Entry Conditions
None

Exit Conditions
None

315

ROM Routines

316

CHROUT = [A002J
Outputs a Character to Device

CHROUT outputs a character to the device specified by the contents of 6F (DEVNUM).
DEVNUM = -2 (printer)
DEVNUM = 0 (screen)

Entry Conditions
On entry, the character to be output is in A.

Exit Conditions
All registers except CC are preserved.

CSRDON = [A004J
Starts Cassette

CSRDON starts the cassette and gets into bit sync for reading.

Entry Conditions
None

Exit Conditions
FIRO and IRO are masked. U and Y are preserved All others are modified.

JOYIN = [A00A]
Samples Joystick Pots

ROM Routines

JOYIN samples all four joystick pots and stores their values in POTVAL through POTVAL + 3.

Left Joystick
Up/Down 15A
Righi/Left 15B

Right Joystick
Up/Down 15C
Right/Left 150

For Up/Down, the minimum value == UP.
For Righi/Left, the minimum value == LEFT.

Entry Conditions
None

Exit Conditions
Y is preserved. All others are modified.

POLCA T = [A000]
Polls Keyboard for a Character

Entry Conditions
None

Exit Conditions
Z = 1, A = 0 (if no key seen).
Z = 0, A = key code, (if key is seen).
B and X are preserved. All others are modified.

317

ERROR MESSAGES

Abbreviation / Explanation

AO Attempt to Open a file that is already open. If you press RESET during cassette 1/0, you'll
get this message. Turn the computer off and try again

BS Bad Subscript. The subscripts in an array are out of range. For example, if you have
A(12) in your program without a preceding DIM line that dimensions array A for 12 or more
elements, you'll get this error. Use DIM to dimension the array.

CN Can't Continue. If you use the CONT command and you're at the END of program
or in other non-continue situations, you'll get this error.

DD Attempt to Redimension an Array. You can dimension an array only once. For example,
you can't have DIM A(12) and DIM A(50) in the same program

DN Device Number Error. You may use only three device numbers with OPEN, CLOSE,
PRINT, or INPUT - 0, -1, or -2. If you use another number, you'll get this error.

DS Direct Statement. The data file contains a direct statement This error can be caused
by attempting to CLOAD a data file.

/0 Division by Zero. It's impossible to d1v1de by zero. even for computers.

FC Illegal Function Call. This error occurs when you use a parameter (number or variable)
witl, a BASIC word that is out ot range. For example. PL/\ Y • .. causes this error.

FD Bad File Data. This error occurs when you PRINT data to a file or INPUT data from
the file. using the wrong type of variable for the corresponding data. For example, INPUT
#-1 A when the data in the file is a string, causes this error.

FM Bad File Mode. This error occurs when you try to INPUT data from a file OPEN for
OUTPUT(O), or PRINT data into a file OPEN for INPUT(I).

ID Illegal Direct Statement. For example, you can use INPUT only as a line in program,
not as a command line.

HP High-resolution Print Error. Attempt to execute a high-resolution text function on a low
resolution text screen or to execute a low resolution text function on a high-resolution text screen.

HR High-resolution Graphics Error. Attempt to execute a high-resolution graphic's statement
without having first setting up a high-resolution screen with the HSCREEN statement.

IE Input Past End of File. Use EOF to check to see when you've reached the end of the
file.1. When you have, CLOSE the file.

10 Input/Output Error. This error is often caused by trying to input a program or data file
from a bad tape.

LS String Too Long. A string may contain only 255 characters.

NF NEXT Without FOR. NEXT is being used without a FOR statement. This error also
occurs when you have the NEXT lines reversed in a nested loop.

NO File Not Open. You can't input or output data to a file until you have OPENed it.

319

Error Messages

320

OD Out of Data. A READ was executed with insufficient DATA for it to READ. A DATA
statement may have been left out of the program.

OM Out of Memory. Ali available memory has been used or reserved.

OS Out of String Space. There is not enough space in memory to do your string operations.
You may be able to CLEAR more space.

OV Overflow. The number is too large for the computer to handle. (ABS(x)>IE38)

RG RETURN Without GOSUB. A RETURN line was encountered without a prior GOSUB.

SN Syntax Error. This could result from a misspelled command. incorrect punctuation, open
parentheses, or an illegal character. Retype the program line or command.

ST String Formula Too Complex. A string operation was too complex to handle. Break it into
shorter steps.

TM Type Mismatch. This occurs when you try to assign numeric data to a string variable1
(A$=3) or string data to a numeric variable (A="DATA'')

UL Undefined Line. The program contains a GOTO, GOSUB. or other branching line that
asks the computer to go to a nonexisting line number.

ERROR CODES

Number Code Comment

0 NF Next Without For

SN Syntax Error

2 RG RETURN Without GOSUB

3 OD Out of Data

4 FC Illegal Function Call

5 ov Overflow

6 OM Out of Memory

7 UL Undefined Line

8 BS Bad Subscript

9 DD Attempt to Redimens1on Array

10 10 Division by Zero

11 ID Illegal Direct Statement

12 TM Type Mismatch

13 OS Out of String Space

14 LS String Too Long

15 ST String Formula Too Complex

16 CN Cannot Continue

17 FD Bad File Data

18 AO Already Open

19 ON Device Number Error

20 10 Input/Output Error

21 FM Bad File Mode

22 NO File Not Open

23 IE Input Past End of File

24 DS Direct Statement

38 HR Hires Graphics Error

39 HP Hires Print Error

321

BASIC COMMANDS,
FUNCTIONS, AND OPERATORS

This section gives a summary of each BASIC command, function, and operator. Please note
that the colors you specify with a command or function have different meanings for each screen
mode. (See "BASIC Colors.")

Commands
BASIC commands tell your computer to do some action. such as drawing a circle on the screen.

ATTA c1,c2,B,U
Sets display attributes of a high-resolution text screen.

c1 Foreground color
c2 Background color
B Character blink on
U Underline on

ATTR 3,2,U

AUDIO switch
Connects or disconnects cassette output to the display speaker.

ON Switches ON sound from cassette player to display speaker.
OFF Switches OFF sound from cassette player to display speaker

AUDIO OFF

CIRCLE (x,y),r,c,h,s,e
Draws a circle on the current low-resolution graphics screen.

x,y Center point
r Radius
c Color
h Height/width ratio
s Starting point
e Ending point

CIRCLE (65,43),20,1,,.5,.8

CLEAR n,h
Erases variables, reserves string workspace, and reserves high memory for machine
language programs.

n String workspace size
h Highest BASIC memory address

CLEAR 200, 20000

CLOAD "filename"
Loads program filename from cassette. If filename is not specified, BASIC loads the first
program file found.

filename Name of desired program. Name can l1avc as many as 8 characters.
CLOAD "PUPPIES"

323

BASIC Commands, Functions, and Operators

324

CLOADM "fi/ename",o
Loads machine-language program filename from cassette. If filename is not specified,
BASIC loads the first machine-language program found.

filename Name of desired machine-language program. Name can have as many
as 8 characters

o Memory address offset If specified, BASIC loads the machine-language
program o bytes higher in memory than normal.

CLOADM "GRAPHICS",2730

CLOSE# d
Closes access to specified device or file. If dis not specified, BASIC closes all open devices
and files.

d Number of device or file
CLOSE #-1

CLS c
Clears the text screen to a specified color. When in high-resolution text mode. BASIC
also sets the background color. If c is not specified, BASIC uses the current background
color.

C

C LS 2
Color code (0-8)

COLOR c1, c2
Sets foreground and background colors of the current low-resolution graphics screen.

c1 Foreground color code (0-8)
c2 Background color code (0-8)

COLOR 2,3

CONT
Continues program execution after a program halt from the (BR-EAK • key or a STOP
instruction.
CONT

CSAVE "fi/ename",A
Saves program filename on cassette.

filename Name of program to save. Name can have as many as 8 characters.
A Selects ASCII format.

CSAVE "NEWFILE",A

CSAVEM "fi/ename",l,h,e
Saves machine-language program filename on cassette.

filename Name of machine-language program being saved. Name can have as
many as 8 characters.

I Lowest address of machine-language program.
h Highest address of machine-language program.
e Exec address of machine-language program.

CSAVEM "GRAPHICS", 28000, 29000, 28032

DATA constant,constant, ...
Stores numeric and string constants for use with READ statement.

constant String or numeric constant(s}, such as: 127.2985 or "Beagle".
DATA 45,CAT,98.DOG,24.3,1000

BASIC Commands, Functions, and Operators

DEF FN name (variables) = formula
Defines a numeric function.

name Name of function. Must be a valid variable name.
variables List of dummy variables used in formula.
formula Defines the operation.

DEF FNA(B)==B*(B+(1/B))

DEFUSR n = addr
Defines the starting address of a machine-language subroutine.

n Number of machine-language routine. (0-9)
addr Starting address of machine-language routine. (0-65535)

DEFUSR0==28032

DEL L1-L2
Deletes program lines.

L 1 Lowest line number to delete.
L2 Highest line number to delete

L 1 Deletes 1 line.
-L2
L1
L 1 L2

DEL 40-75

Deletes from beginning of program up to and including L2
Deletes from and including L 1 to the end of the program
Deletes from and including L 1 to and including L2.

DIM array(size),array(size), ...
fJ1mens1ons one or more arrays.
DIM A$(3,1(1)) ,R4(22)

DRAW string
Draws a line on the current low-resolution graphics screen as specified by stnng The
string commands are:

A Angle
BM Blank move
C Color
O Down
E 45 degree angle
F 135 degree angle
G 225 degree angle
H 315 degree angle
L Lett
M Move draw position
N No update
R Right
S Scale
U Up
X Execute substring

DRAW "BM128,96;U25;R25;D2S;L25"

325

BASIC Commands, Functions, and Operators

326

EDIT line number
Edits a program line. After fetching specified line number, EDIT recognizes several
commands:

C Changes criaracters
D Deletes characters
H Hacks off rest of line and permits insertion
I Inserts characters
K Kills up to cursor
L Lists line being edited
S Searches for a specified character
X Extends line

CfilffrtJCD Returns to line mode
EDIT40

END
Marks the end of a BASIC program.
END

EXEC (address)
Transfers control to a machine-language program at address. If address Is omitted. control
is transferred to the address set by the last CLOADM.
EXEC 28032

FOR variable = n1 TO n2 STEP n3
Defines the beginning of a loop. The end is specified by NEXT.

vanable Loop counter variable
n 1 Starting value of counter
n2 Ending value of counter
n3 lncrernerit or decrement value of cuuI1ter

FOR Z=35 TO 125 STEP 5

GET (sx,sy)-(ex,ey),array,G
Stores a rectangle lhal i;; on the low-resolution CJrapt1ics screen In an array, fur future
usn by the PUT co111111a11CJ.

sx,sy First corner of rectangle
cx,ey Opposite corner of rectangle
array Two cJirnensional array
G Selects full graphic detail storage. Requires use of PSET. PRESET. AND,

OR. or NOT when using PUT.
GET (22,34)-(47,38),M,G

GOSUB line number
Calls a subroutine beginning at the specified line number.
GOSUB 330

GOTO line number
Jumps to the spec1f1ed line number
GOTO 125

HBUFF buffer,size
Reserves an area in memory for high-resolution graphics.

buffer Number of buffer selected
size Defines buffer size. BASIC allows a buffer to have a maximum size of

7931.
HBUFF 1 ,65

BASIC Commands, Functions, and Operators

HCIRCLE (x,y),r,c,h,s,e
Draws a circle on the high-resolution graphics screen

x.y Center point
r Radius
c Color
h Height/width ratio
s Starting point
e Ending point

HCIRCLE (55,64) ,20,2,3, .4,. 7

HCLS c
Clears the high-resolution graphics screen to a specified color

c Color
If unspecified, BASIC uses current background color.

H CL S 2

HCOLOR c1,c2
Sets foreground and background color on the h1gh-resolut1on graphics screen.

c 1 Foreground color (0-15)
c2 Background color (0-15)

HCOLOR 2,3

HDRA W string
Draws a line on the high-resolution graphics screen as 0 pec1'1ed by stnng. The strmg
commands are

A Angle
BM Blank move
C Color
D Down
E 45 degree angle
F 135 degree angle
G 225 degree angle
H 315 degree angle
L Left
M Move draw position
N No update
R Right
S Scale
U Up
X Execute substring

HDRA\oJ "BM128,96;U25;R25;D25;L25"

HGET (sx,sy)-(ex,ey),buffer
Stores a rectangle that is on the high-resolution graphics screer1 into a butter previously
set up by the HBUFF command for future use by the HPUT command.

sx.sy First corner of rectangle
ex.ey Opposite corner of rectangle
buffer Number of butter

HGET (21,32)-(28,37) ,1

327

BASIC Commands, Functions, and Operators

328

HLINE (x1 ,y1)-(x2,y2),c,a
Draws a line on the high-resolution graphics screen.

(x1,y1) Starting point of line. If omitted, the line starts at the last ending point,
or the center of the screen.

- (x2,y2) Ending point of HLINE.
c Defines color (Required). PSET selects current foreground color. PRESET

selects current background color.
a Box action (Optional). It omitted. BASIC draws a line. If Bis used, BASIC

draws a box, using the starting and ending points as opposite corners
of the box. If BF is usod, BASIC draws a solid box.

HLINE (22,33)-(100,90) ,3,BF

HPAINT (x,y),c1 ,c2
Paints an area on the high-resolution graphics screen.

x,y Starting point
c1 Paint color
c2 Border color

HPAINT (55,66),2,3

HPRINT (x,y),message
Prints message on the high-resolution graphics screen.

x y Starting position
message String to print

HPRINT (20,12),"HELLOI"

HPUT (sx,sy)-(ex,ey),b,a
Copies graphics from a buffer to a a rectangle on the high-resolution graphics screen.

sx,sy First corner of rectangle
ex,ey Opposite corner of rectangle
b Butter number
a Action used. Actions include PSET, PRESET, AND, OH. NOT

HPUT (22,33)-(28,37) ,1,PSET

HRESET (x,y)
Resets a point on the high-resolution graphics screen to the background color.
HRESET (22,33)

HSCREEN mode
Selects a high-resolution graphics screen mode. Modes 1-4 also clear high-resolution
graphics screen.

mode Mode number. Mode numbers are:
0 - Low resolution

HSCREEN 4

HSET (x,y,c)

1 - 320 X 192, 4-color
2 - 320 X 192, 16-color
3 - 640 X 192, 2-color
4 - 640 X 192, 4-color

Sets point x,y on the high-resolution graphics screen to Color c. It you omit c, BASIC
uses the foreground color.
HSET (22,33,2)

BASIC Commands, Functions, and Operators

HSTAT v1,v2,v3,v4
Returns information regarding the high-resolution text screen cursor to variables v1, v2, v3,
and v4.

v1 Character code
v2 Character attribute
v3 Cursor X coordinate
v4 Cursor Y coordinate

HSTAT C,A,X,Y

IF test THEN #1 ELSE #2
Performs a test. If the results are true, the computer executes the first instruction (#1).
If the results are false, the computer executes the second instruction (#2).
IF A<N THEN PRINT "A<N" ELSE PRINT "A>=N"

INPUT var1,var2, ...
Reads data from the keyboard. and saves it in one or more variables.
INPUTK3

INPUT #-1 var1,var2, ...

LET

Reads data from a cassette, and saves it in one or more variables.
INPUT#-1,C$

Assigns a value to a variable (optional).
LET A3=27

LINE (x1 ,y1)-(x2,y2),c,a
Draws a line on the current low-resolution graphics screen.

(x1,y1) Starting point of line. If omitted, the line starts at the last ending point,
or the center of the screen.

-(x2,y2) Ending point of line.
c Defines color (Required). PSET selects current foreground color. PRESET

selects current background color.
a Box action (Optional). If omitted, BASIC draws a line. If Bis used, BASIC

draws a box using the starting and ending points as opposite corners
of the box. If BF is used, BASIC draws a solid box.

LINE (22,33)-(27 ,39), PSET, BF

LINE INPUT
Reads data from the keyboard. and saves it in a variable. Commas are characters, and
not delimiters.
LINE INPUT A$

329

BASIC Commands, Functions, and Operators

330

LIST L1-L2
Lists specified program line(s) or the entire program on the screen.

L 1 Lowest line number to list.
L2 Highest line number to list.

L 1 Lists 1 line.
-L2 Lists from beginning of program up to and including L2.
L 1- Lists from and including L 1 to the end of the program.
L 1-L2Lists from and including L 1 to and including L2.

LIST 20-45

LLIST L1-L2
Lists specified program line(s) or the entire program on the printer.

L 1 Lowest line number to list
L2 Highest line number to list.

L 1 Lists 1 line
-L2 Lists from beginning of program up to and including L2.
L 1- Lists from and including L 1 to the end of the program.
L 1-L2Lists from and including L 1 to and including L2.

LLIST -90

LOCATE x,y
Moves the high-resolution text screen cursor to position x,y.
LOCATE 20,12

LPOKE location, value
Stores a value (0-255) in a virtual memory location (0-524287 decimal or 0-$7FFFF
hexadecimal).
LPOKE 480126,241

MID$ (s,p,/)
Replaces a portion of the contents of string variable s with another string

s String being modified
p Starting position in string
/ Length of section being modified

MID$ (A$,4,3)="CAT"

MOTOR
Turns the cassette ON or OFF.
MOTOR ON

NEW
Erases everything in memory.
NEW

NEXT v1,v2, ...
Defines the end of a FOR loop.

v1 ,v2 Optional variable names, used for nested loops. If used. list in reverse
order of FOR variables. If omitted, only defines the end of the last loop
declared.

NEXT X,Y,Z

ON BRK GOTO line number
Jumps to line number when the • BREAK l key is pressed.
ON BRK GOTO 120

BASIC Commands, Functions, and Operators

ON ERR GOTO line number
Jumps to line number when an error occurs.
ON ERR GOTO 120

ON ... GOSUB
Multiway call to specified subroutines.
ON A GOSUB 100,230,500,1125

ON ... GOTO
Multiway branch to specified lines.
ON A GOTO 100,230,500,1125

OPEN m,#dev,f
Opens specified file for data transmission

m Transmission mode
I - Input
0 - Output

#dev #·2 - Printer
#-1 - Cassette
#0 - Keyboard or screen

Filename
OPEN "O",#-1,"DATA"

PAINT (x,y),c1,c2
Paints an area on the current low-resolution graphics screen.

x,y Starting point
ct Paint color
c2 Border color

PAINT (44,55),2,3

PALETTE CMP or RGB
Resets the palette registers to the standard colors for a composite monitor or a television
set (PALETTE CMP), or for an RGB monitor (PALETTE RGB).
PALETTE CMP

PALETTE pr, cc
Stores Color Code cc (0-63) into Palette Register pr (0-15).
PALETTE 1, 13

PCLEAR n
Reserves n number of 1.5 K graphics memory pages.
PC LEAR 4

PCLS c
Clears current low-resolution graphics screen with Color c. If you omit c, BASIC uses the
background color.
PC LS 0

PCOPV s TO d
Copies low-resolution graphics from source page to destination page.

s Source page number
d Destination page number

PCOPY 1 TO 2

331

BASIC Commands, Functions, and Operators

332

PLAY string
Plays music as specified by string The string commands are:

A-G Notes
L Length
0 Octave
P Pause
T Tempo
#or+ Sharp

Flat
PLAY "L1 ;A;A#;A-"

PMODE mode,page
Selects resolution and first memory page of a low-resolution grapl1ics screen

mode 0 - 128 x 96 x 2 color
1 - 1 28 x 96 x 4 color
2 - 1 28 x 192 x 2 color
3 - 128 x 192 x 4 color
4 - 256 x 1 92 x 2 color
II omitted BASIC uses the last value set. At power on. BASIC uses 2

page Start page If omitted. BASIC uses the previously set page At power
on. BASIC uses 1

PMODE4,1

POKE location, value
Stores a value (0255) In a memory location (0-65535 decimal or 0-$FFFF l1exadec1mal)
POKE 28000,241

PRESET (x,y)
Resets a point on thn c11rre11t low-resolution gra.ph1cs screen to lhe backc_1rouncl color
PRESET (22,33)

PRINT message
rrints on the text scr·eens.
PRINT "HELLQI"

PRINT #-1,data
Writes data to cassette.
PRINT #-1 ,A$

PRINT #-2,data
Prints on the printer
PRINT #-2,"HELLQI"

PRINT TAB(n)
Moves the cursor to column n on the low and high-resolution text screens.
PRINT TAB(22) ;"HELLO r"

BASIC Commands, Functions, and Operators

PRINT USING"format";data
Prints numbers in the specified format on the text screen. The format commands are:

Formats numbers.
Decimal point
Prints comma to the left of every third character.
Fills leading spaces wit11 asterisks.

$ Prints dollar sign
$$ Floating dollar sIgr1
+ Leading or trailinCJ sI~1n
tttt Exponer1tial format

Minus sign after negative 11urnbers
Prints first st1111CJ character

%spilces% String t1eid. Length of f1oid Is nurnber ot spaces plus ?
PRINT USING "##.##IU/";1/3

PRINT @n,message
Prints message on low-resolution text screen at position n.
PRINT @11,"HELL0 1 "

PSET (x,y,c)
Sets point x,y on the current low-resolution graphics screen to Color c. It c is omitted,
BASIC uses the foreground color
PSET (22,33,2)

PUT (sx,sy)-(ex,ey), v,a
Copies graphics from an array to a rectangle on the low resolution graphics screen.

sx,sy First corner of rectangle
ex,ey Opposite corner of rectangle
v Two dimensional array
a Action used .. Actions include

PSET. PRESET. AND. OR. NOT
PUT (22,33)-(27,39) ,A,PSET

READ var1,var2, ...
Reads the next item(sJ In a DATA line. Saves data 1n specified variable(s)
READA1,B,C7

REM comment
Lets you insert comments in a program line The computer ignores everything in the line,
after the REM.
REM THIS IS A COMMENT LINE

RENUM newline,startline,increment
Renumbers program lines.

newline New starting line
startline Line where renumbering starts
increment Step value for lines

RENUM1,1,10

RESET (x,y)
Resets a point on the low-resolution text screen to the background color.
RESET (22,33)

333

BASIC Commands, Functions, and Operators

334

RESTORE
Sets the computer's pointer back to the first item on the first DATA line.
RESTORE

RETURN
Returns the computer from a subroutine to the BASIC word following GOSUB.
RETURN

RUN
Executes a program.
RUN

SCREEN type,colors
Selects low-resolution screen modes and color sets.

type O - Text

colors

SCREEN0,1

SET (x,y,c)

1 - Graphics
0 - Color set 0
1 - Color set 1

Sets point x,y on the low-resolution text screen to Color c. If you omit c, BASIC uses the
foreground color.
SET (11,11,3)

SKIPF filename
Skips to next program on cassette tape or to the end of a specified program.

filename Optional name of program to skip over.
SKIPF "DATA"

SOUND tone,duration
Sounds a specified tone for a specified duration.

tone 1-255 sets pitch
duration 1-255 sets duration

SOUND 33, 22

STOP
Stops execution of a program.
STOP

TIMER= n
Sets timer to n.
TIMER=120

TROFF
Turns off program tracer.
TROFF

TRON
Turns on program tracer.
TRON

BASICS Commands, Functions, and Operators

WIDTH n
Sets the text screen to Resolution n:

32 - 32 X 16 (low-resolution text)
40 - 40 X 24 (high-resolution text)
80 - 80 X 24 (high-resolution text)

WIDTH80

Functions
BASIC functions are built-in subroutines that perform some kind of computation on data, such
as computing the square root of a number. Use BASIC functions as data within your program
lines.

ABS (n)
Returns the absolute value of n.
A=ABS(B)

ASC (string)
Returns the code of the first character in string.
A=ASC(B$)

ATN (n)
Returns the arctangent of n in radians.
A=ATN(B/3)

BUTTON (n)
Returns 1 if Joystick Button n is being pressed; 0 if Joystick Button n is not being pressed.
n can be

0 - Right Joystick, Button 1 (old joystick)
1 - Right joystick, Button 2
2 - Lett Joystick, Button 1 (old joystick)
3 - Lett joystick, Button 2

A=BUTTON (0)

CHA$ (n)
Returns the character corresponding to character code n.
A$=CHR$(65)

COS (angle)
Returns the cosine of an angle using radians.
A=COS(B)

EOF(d)
Returns FALSE (0) if there is more data; TRUE (-1) if end of file has been read.

d Device number:
-1 Cassette

IF EOF (-1)=-1 THEN 220

ERLIN
Returns the BASIC line number where an error has occurred
IF ERLIN=110 THEN 200

335

BASIC Commands, Functions, and Operators

336

ERNO
Returns the BASIC error number for the error that has occurred.
IF ERNO=20 THEN CLOSE

EXP (n)
Returns a natural exponential number (et n)
A:::EXP(B*1.15)

FIX (n)
Returns the truncated integer of n. Unl1kr: IN l, FIX does not return tile next lower number
for a nr:gat1ve n
A=FIX(B-.2)

HEX$ (n)
Returns a string with the hexadecimal value of n.
PRINT HEX$(A) ;"=";A

HPOINT (x,y)
Returns 1nformat1on on point x,y from the high-resolution graphics screen:

O Point is reset
Code Point is set.

IF HPOINT(22,33)=0 THEN 200

INKEY$
Checks the keyboard and returns the key being pressed or 11 no key is being pressed,
returns a null string (" ").
A$=INKEY$

INSTR (p,s,t)
Searches a strinq. Returns location ot ;:i target string 1n a search string.

p Start position of search
s String being searched
t Target string

A=INSTR (1,M5$,"BEETS")

INT (n)
Converts n to the largest integer that is less than or equal to n.
A=INT(B+.5)

JOYSTK (j)
Returns the horizontal or vertical coordinate U) of the left or right joystick:

0 - Horizontal, right joystick
1 - Vertical, right joystick
2 - Horizontal, left joystick
3 - Vertical, left joystick.

A=JOYSTK(0)

LEFT$ (string, length)
Returns the left portion of a string.
length specifies number of characters returned.
A$=LEFT$(B$,3)

LEN (string)
Returns the length of string.
A=LEN(B$)

BASIC Commands, Functions, and Operators

LOG (n)
Returns the natural logarithm of n.
A=LOG(B/2)

LPEEK (memory location)
Returns the contents of a virtual memory location (0-524287 decimal or 0-$7FFFF
hexadecimal).
A=LPEEK(&H7FFF0)

MEM
Returns the amount of free memory.
A=MEM

MIDS (s,p,f)
Returns a substr1.1g of string s

s Source string
p Starting position of substring
/ Length of substring

A$=MID$(B$,Z,2)

PEEK (memory location)
Retur r1s tile coritcnts of a memory locatirn1 (0 G:i:J35 decimal or 0-&H,TFF hexadecimal).
A=PEEK(30020)

POINT (x,y)
Ret11rns 1ntnrmation on point x,y from tl1e low-resolution text semen

- I Point is part of an alphanumeric character
0 Point is reset

Code Point is set
A=POINT(22,33)

POS (dev)
Returns the current print position.

dev Pm,t device number
0 Screen
2 Printer

A=POS(0)

PPOINT (x,y)
Returns information on point x,y from the low-resolution graphics screen:

0 Point is reset
Code Point is set

A=PPOINT(22,33)

RIGHT$ (string,length)
Returns the rrght portion of a string.

length Specifies number of characters returned.
A$=RIGHT$(B$,4)

RND (n)
Generates a "random" number between 1 and n if n> 1, or hetween O and 1 if n ~ 0.
A=RND(0)

337

BASIC Commands, Functions, and Operators

338

SGN (n)
Returns the sign of n

- 1 - Negative
0-0
1 - Positive

A=SGN(A+.1)

SIN (angle)
Returns the sine of angle using radians.
A=SIN(B/3.14159)

STRING$ (/,c)
Returns a string of a repeated character.

/ Length of string
c Character used. Can be a code, or a string

A$=STRING$(22,"A")

STA$ (n)
Converts n to a string
A$=(1.234)

SQR (n)
Returns the square root of n.
A=SQR(B/2)

TAN (angle)
Returns the tangent of angle using radians.
A=TAN(B)

TIMER
Returns the contents of the timer (0-65535).
A=TIMER/18

USRn (argument)
Calls machine-language subroutine n. passes it an argument, and returns a value from
the subroutine to the BASIC program.
A=USR0(B)

VAL (string)
Converts a string to a number.
A=VAL("1. 23")

VARPTR (variable)
Returns a pointer to where a variable is located in memory.
A=VARPTR(B)

BASIC Commands, Functions, and Operators

Operators
BASIC operators perform some kind of operation on data, such as adding two numbers.

CD

+

• , I

+,-

NOT, AND, OR

<, >, =, <=, >=, <>

Exponentiation

Unary negative, positive

Multiplication, division

Addition and concatenation, subtraction

Logical oper;,tors

Relational tests

339

$ 14
&H 234
&O 234
* 7, 339

+ 7, 71,339
, 20
- 7,339
I 7,339

INDEX

128 x 192 Graphics screen worksheet 286
128 x 96 Graphics screen worksheet 285
256 x 192 Graphics screen worksheet 287
32 x 16 Text screen worksheet 281
320 x 192 Graphics screen worksheet 288
40 x 24 Text screen worksheet 283

64 x 32 Text screen worksheet 282
80 x 24 Text screen worksheet 284
: 20, 40
; 20
@ 45,333
ABS 202, 335
AND 40, 165, 339
Array variables 183, 189, 193. 195
ASC 212, 335
ATN 202, 335
A TTR 49, 52, 323
AUDIO 109, 323
BUTTON 117, 335
CHA$ 212, 335
CIRCLE 147, 323

CLEAR 12, 232, 323
CLOAD 78, 323
CLOADM 232, 324
CLOSE# 179, 324
CLS 8, 11, 48, 51,324

Color code determination program 53, 271
Color code table 53, 295
COLOR 131, 324
Command summary 323
CONT 225, 324
cos 202, 335
CSAVE 77, 324
CSAVEM 234, 324
DATA 59, 324
Debugging 8, 226, 227
DEF FN 205, 325
DEFUSR 233, 325
DEL 84, 325

341

Index

342

Derived functions 307
DIM 164, 184, 193, 325
DRAW 155, 325
EDIT 81, 326
ELSE 38
END 38, 326
EOF 181, 335
ERLIN 228, 335
ERNO 227. 336
Error codes 3? 1

Error messages 8, 319
EXEC 233, 326
EXP 205, 336
FIX 201, 336
FOR 25, 326
Function summary 335
GET 163, 326
GOSUB 65, 326
GOTO 19, 326
HBUFF 173, 326
HCIRCLE 170, 327
HCLS 170, 327
HCOLOR 170, 327
HDRAW 170, 327
HEX$ 234, 336
HGET 175, 327
High-resolution text screen codes 128-159, 293
HLINE: 170, 328
HPAINT 170, 328
HPOINT 170, 336
HPRINT 172, 328
HPUT 175, 328
HRESET 170, 328
HSCREEN 169, 328
HSET 170, 328
HSTAT 220, 329
IF 22, 329
INKEY$ 87, 336
INPUT# mo, 329
INPUT 18, 329
INSTR 208, 336
INT 61, 336
JOYSTK 115, 336
LEFT$ 72, 336
LEN 71, 336
LET 13, 14, 329
LINE INPUT 215, 329
Line printer system variables 313
LINE 125, 329
LIST 18. 35, 330
LLIST 192, 330

LOCATE 45, 330
LOG 204, 337
Logical Operators (AND, OR, NOT) 39, 165, 339
Low-resolution text screen codes 128-255 292
LPEEK 235, 337
LPOKE 235, 330
Mathematical formulas 305
MEM 226, 337
Memory map 311
MIO$ 73, 211, 330, 337
MOTOR 109, 330
Musical tone list 303
NEW 17, 330
NEXT 25, 330
Non-standard colors 137, 295
NOT 39, 165, 339
Numeric variables 13, 15, 183, 193, 195
ON BRK GOTO 228, 330
ON ERR GOTO 227, 331
ON GOSUB 66, 331
ON GOTO 67, 331
OPEN 179, 331
OR 40, 165, 339
Pages 141
PAINT 153, 331
PALETTE CMP/RGB 9, 11, 54, 331
PALETTE number, color 51, 52, 53, 137, 33-,
Palette usage tables 299
PCLEAR 143, 331
PCLS 132, 331
PCOPY 144, 331
PEEK 234, 337
PU\Y 95, 332
PMODE 133, 141, 332
POINT 107, 337
POKE 232, 332
POS 219, 337
PPOINT 124, 337
PRESET 123, 165, 332
PRINT #-1 179, 332
PRINT#-2 192, 332
PRINT @ 45, 333
PRINT TAB 47, 332
PRINT USING 216, 333
PRINT 4, 11, 13,332
PSET 121, 165, 333
PUT 163, 333
READ 59, 333
Relational tests{<,<=,=,<>,>,>=) 39,339
REM 66, 333
RENUM 85, 333

Index

343

Index

344

RESET 107, 333

RESTORE 60, 334
RETURN 65, 334

RIGHT$ 72, 337
RND 55, 337
ROM routines 315
RUN 17, 334
SCREEN 129, 334
SET 103, 334
SGN 202, 338
SIN 202, 338
SK/PF 78, 334
SOUND 10, 11, 334

Space Bar 81
SOR 201, 338
Standard palette table 297
STEP 27, 326
STOP 225, 334
STR1 208, 338
String variables 14, 189
STRING$ 207, 338
System start-up 3
TAB 47, 332
TAN 202, 338
Text screen codes 0-127 289
THEN 22
TIMER 221, 334, 338
TROFF 226, 334
TRON 226, 334
USING 216
USR 233, 338
VAL 89, 338
Valid input ranges 309
Variable names 13
VARPTR 338
WIDTH 43, 131, 335
EJ 5, 81
(BREAK) 20

(ENTER) 4

Cfil!IIT)C[) 3, 47

CfilITEDEJ 81
CfilllITJ(@) 20, 35
OJ 7, 339
I SHIFT J(D 81

TERMS AND CONDITIONS Of SALE AND LICENSE OF TANDY COM Pu TER EQUIPMENT AND SOFTWARE PURCHASED
FROM RADIO SHACK COMPANY-OWNED CWPUTER CENTERS. RETAIL STORES AND RADIO SHACK FRANCHISEES

OR DEALERS AT THEIR AUTHORIZED LOCATIONS

LIMITED WARRANTY
L CUSTOMER OBLIGATIONS

A CUSTOMER assumes full respons1bil1ty Frat th,s coripute, 1ardware purc1ased (toe Equrpment'). and any copies ol software included w1lh the
Equipment or licensed separately (the Sott,-.,·c1rc r7eets thP spec.i 1catInns capahii1t1es. versat1l1ty, and othc1 rcqu1mrnents of CUS!OMrR

B CUSTOMER assumes full respons1bilct)'' 1or the r11nd1t1or, anc eifect vP,1ess 1l1e 0pP.1ating criv1ronment in wh1cr1 Hie fqu1pmcr1t rmd Software are to
furict1un. and for its 1nstallat1on

II. LIMITED WARRANTIES ANO CONDITIONS OF SALE

A For a period nf ninety (9U) cc1lend;;r ~rnrr t1e d2tL· ul !1H" Ra1j o -:,-iles; ,jocuri1en! recr.1ved upon purchase ot Hie I q111pment F-lAOIO SHACK
wnrrants to the ongmal CUSlOMHl the Equ1[11l•p.1; ,1n1j 11H;' 111P(i 11rn ,1pc111 w/1 ch thr Software 1s stored 1s f1ee !rorn m;rnu1acltmnri detects. This
warranty is only applicable to purchases ot Tandy Equipment bv the original customer from Radio Shack company-owned computer centers, retail
stores, and Radio Shack franchisees and dealers at their authorized locations ~tit w;;rranty rs vrnd 11 !he rqu1pn1ent or SottwJ1e l1as heen subJcch-!cl In
1mp1oµe1 Ill r1t1n,-:ir111a! use It a rnJr:u1JctJ11"1\; neiect ,:.i d sc1 1,1nr1-J t11r. ct.1te(/ •••Jrrarity renod. !lie dr.ler.t1vc Equ1µ111erit rn11st be re\urm1d to J

Harlin Shacf\ Co111µutP.r Center d Ha:Lo rctJ,I stnrP a /r;inch1scc or d pr1rt1r.1pat111y Ha1i1u Shad dei.!ler tur rep,11r olo11g
w1Hl J coµy ul !hr. sa1cs ducurnr.ni or HS Jnd exclus1vr, remedy 1r1 1hr, event o! a dBIBct Is l11r11terl In the
cu11i,cl1on of the <Jelcct hy repair. ct HAIIIO SHACKS elecl1on and suli, expen°,e RAUIO SHAcK has no
obl1oat1on tu replace or repair 1te'''S
RADIO SHACK makes no warranty as tu t>e ,es
Software 1s licensed nn an "AS iS basis
defect. 1s its repair or replacement with,ri th
The defective Software shall be returned to a
Shack dealer along with the saies docue,ent

capab Irv capaC'ty :.n su1rab1·1ty !or usA of the Software except as prnv1ded in this paragraph
11,e :wo na1 CvSTOMER'S exclusive remedy, 1n the Hvenl of a Software manufacturn1g

o• r,1e di:'.e ot 1he Radio Shack sales document recflIved upon license of the Sottware
Shack :-:cm~ 1ter Ce':ter a 9:J.d-o Shack retail store. d part1cIpatIng Radio Shack franchiser, or Radio

Except as provided herein rm employee. ager1\ 1r:rne1 see Uea!er or 011-ier
SHACK

s autnonzed to g1vr, any warranties of any nature on behalf of F~AOID

EXCEPT AS PROVIDED HEREIN, RADIO SHACK MAKES NO EXPRESS WARRANTIES. AND ANY IMPLIED WARRANTY OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE IS LIMITED IN ITS DURATION TO THE DURATION OF THE WRITTEN LIMITED WARRANTIES SET FORTH
HEREIN.
Some stares do nut allow l1m1tat1011s c", nnv-, crnq d'·· 1rp1-ed last, so t'e abcwe !m11tation(s) may not apply to CUSTOMER

Ill. LIMITATION OF LIABILITY

A EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON OR ENTITY
WITH RESPECT TO ANY LIABILITY. LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY "EQUIPMENT" OR
"SOFTWARE" SOLO, LEASED, LICENSED OR FURNISHED BY RADIO SHACK. INCLUDING, BUT NOT LIMITED TO, ANY INTERRUPTION OF SERVICE,
LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OR OPERATION OF THE "EQUIPMENT"
OR "SOFTWARE." IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL
DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE,
LICENSE, USE OR ANTICIPATED USE OF THE 'EQUIPMENT" OR "SOFTWARE."
NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES. RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY CUSTOMER
UR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR "EQUIPMENT" DR "SOFTWARE" INVOLVED.

A HADIO SHACK ::;t1all not be liable iur r1nv ccusl-!11 ."\ 1n ucl- 11H'ilQ :,r 1u•::1s'rnq rriu1pml'1lt orHJ:nr .Software.
C No ar.t1on Jr1:.;I11g out of ;my clJ1n1erl hrr..::n1 ut \Ncirr:-inrv r11 1,niJ1_'1 ttrs n1dy Ue brouqhf n101e tlian two (?) years after the cause

of ;:ir:1IOI1 hJs accruerl or 111u1e !hi-Hl tr,1,1 vcars ;1(tpr th.-, LIJk 1-:r r·w P,11j ,, lor the Equ1prm~nt nr Software. wh1chr.vcr f1r::;I

Some ::;ta!f!s dn not allow n11-: l1rnIt;it,ui! vr
CUSIOMtn

:--!r1r::-1cw:, :.;u n11-i ;ihovr I11111ti.!l1on(s) nr 1:xc1us1un(s) m;:iy not aµµly to

IV. SOFTWARE LICENSE

RADIO SHACK or;:int", to cus !OMrR c1 no:1 L:1.ci<1s vP n<'1111 u~, '111~ I.AJJ[,\ Snflw,.ire un one rnmpuh:!. suti1ect to Hw 1ullow1nq prov1s1ons
/\ t:Xcept as otherwise prov11forl :n U11s SnttwarA I 1 Jµpiy !n the Software
1:1 l1lle to tl1c 1ned1um on w/1101 l!ie .Sof!wJrr I::i ,'"1 1SkL''.k; ·:Y <;tornd /HUM) 1s transtcued tu CUSTOMER, but not title tu t11e

0

G

Software.
ClJSfOME:fl may use ~ultwa.rB ,1 r1u'l1user ur -,p1·<1,·1J1·k :i/j\en1 Cl'l 1i 1 ~1t·1tr. t11e Snfrware Is expressly labeled lo trn for use or1 a multiuser or network
system. or one copy of U11s software is purc1:-isAc1 tor 80U1 11U(1F :Jr trrrrTid1 w1 ·,i,,h1r'l Sut!wdre 1,1; to be used simultaneously
CUSIOMCR shall not use. make. ,ca1ulacture or recroauce ,cop,es ol Sullware except !or use on one computer and as 1s specifically provided in this
Software License. Customer 1s expressly- pron·b ted 1run1 d,sasser"b1,rig 1'1e Sottw21B
CUSTOMER 1s permitted to rna.,e add 1t.ona1 cop 1es of tne Soltwm only 10, ~,c,uu or archival purposes or 1f add1t1onal copies are required in the
operation of one computer wrlh the Sottwace out only to tie extent tne Sottwars al,ows a backup copy to be made However. for TRSDOS Software,
CUSTOMER is permitted to make a Lrr,ted ·1ull'ber of add1tonal enc es tor CUSTOMFR Sown use
CUSTOMER may resell ot distnbute un!"od fred cop,es ot the Software pcov 1ded CcSTOMER has purchased one copy of the Software for each one sold or
distributed. The provisions of !hrs Software c cense shal' a:so ie apo11cab,e to 1,,,0 parties receiving copies of the Software from CUSTOMER
All copyright notices shall be retained on a,' cop es of t1e Sottware

V. APPLICABILITY OF WARRANTY

A. The terms and conditions ot th,s Warranty ,,e aop1 1cab1e as between RADIO StiACK and CUSTOMER to either a sale ol the Equipment and/or Software
License to CUSTOMER or to a transact,oo whereby Rado S,1ack sel s or con,eys such Equipment to a third party tor lease to CUSTOMER.

B The l1m1tat1ons of liab1l1ly and Warranty p1oy,s1ons 1ere,n sha,1 roure to tne be11el1t of RADIO SHACK, the author, owner and or licensor of the Sottware
and any manufacturer of the Equipment so,d by Radio Shack

VI. STATE LAW RIGHTS

The warranties granted herein give the original Ceo fOMEn spec t,c iega1 r gms and tne original CUSTOMER may have other rights which vary from state to
state

6/86

1·,·c,,·;7;'.;"',"''

I

RADIO SHACK, A Division of Tandy Corporation
FORT WORTH, TEXAS 76102

PRINTED IN KOREA
811019410A

	Color Computer 3 Extended Basic
	Cover
	Color Computer 3 Extended Basic
	Hello Newcomers...
	...And Welcome Back Oldtimers
	New Commands in Extended Basic V2
	Contents
	Part 1/ The Basics
	Part 2/ Having Fun
	Part 3/ Dramatic Changes
	Part 4/ The Big Picture
	Part 5/ Getting Down the Business
	Part 6/ Back to Basics
	Part 7/ Odds and Ends

	Part 1/ The Basics
	1/ Meet Your Computer
	This is How to Start (Poer Up)
	Using the Keyboard (The 'Shift-0' Keys
	Entering A Command (The PRINT Command)
	Entering Numbers (Numbers v Strings)
	A Color Calculator (+,-,/,*, and ^)
	Making Mistakes (Error Messages)
	A Screen of a Different Color (The CLS Command)
	The Standard Colors (The PALETTE Command)
	Computer Sound Off-One, Two... (The SOUND Command)
	Say It In Its Own Words (Command Syntaxes)
	Learned in Chapter 1

	2/ Your Computer Never Forgets (... unless you turn it off ...)
	This is How it Works (The LET Command)
	Rules, Rules, Rules... (The TM Error)
	A New Kind of Arithmetic (Using Numeric Variables)
	Learned in Chapter 2

	3/ A Sample Program
	A Simple 1-Line Program (The NEW and RUN Commands)
	And Now, a 2-Line Progra (The LIST Command)
	Entering Your Name (The INPUT Command)
	Again and Again (The GOTO Command)
	Print Spacing (The PRINT, and PRINT; Commands)
	A Compact Program (The Colon(:))
	Changing The Program (Inserting, Deleting, and CHanging Program Lines)
	Color/Sound Demonstration (An Example of a Program)
	Add Polish to the Program (The IF/THEN Command)
	Learned in Chapter 3

	4/ A Loop
	How to Count (The FOR and NEXT Commands)
	Counting byTWO's (The STEP Option)
	Counting the Sounds (an Example of FOR/NEXT)
	But Can it Sing?
	Learned in Chapter 4

	5/ A Loop Within A Loop
	Setting a Timer Pause (A paactical use of FOR/NEXT)
	A Loop Within a Loop (Nested FOR/NEXT Commands)
	A Computer Clock (Example of Nested FOR/NEXT Commands)
	Listing Long Programs (The LIST Command and the 'Shift-0' Keys)
	Learned in Chapter 5

	6/ Decisions, Decisions...
	Adding Another Level (The ELSE Option and Nested IF/THEN Commands)
	... And Still More Levels... (Additional ELSE Clauses)
	... And Packing Even More into a Decisions (The Colon(:))
	A More Subtle Decision (The AND ad OR Conditions)
	Learned in Chapter 6

	7/ The Screen
	The Big Screen (The WIDTH Cmmand)
	32x16
	40x24
	80x24

	Screen Positions (The PRINT @ and LOCATE Commands)
	Prnting in Straight Lines - The PRINT TAB Command
	Lowercase Letters (The 'Shift-0' Keys)
	Colors (The CLS Command)
	Dramatic Highlights (THE ATTR Command)
	Color Numbers
	Learned in Chapter 7

	8/ Colors
	Specifying Colors for 40/80 Column Text (The Palette)
	Table 8.1 CLS and Palette
	Table 8.2 ATTR Foreground and the Palette
	Table 8.3 ATTR Background and the Palette
	Using Nonstandard Colors (The PALETTE Command)
	Name the Colors! (Naming Colors for Future Reference)
	Using Nonstandard Colors in a Program (An example of PALETTE)
	Returning to Standard Colors (The PALETTE CMP and PALETTE RGB Commands)
	Learned in Chapter 8

	9/ Random Chance
	Picking a Random Number (The RND Function)
	 A Random Show (an Example of RND)
	Rolling the Dice (An Example of RND)
	Learned in Chapter 9

	10/ Reading
	Reading Data (The DATA and READ Commands)
	Reading the Same Data - Over and Over (The RESTORE Command)
	A Vocabulary Building Test (The INT Function)
	Learned in Chapter 10

	11/ Help With Arithmetic
	Subroutines (The GOSUB and RETURN Commands)
	Labeline Subroutines (The REM Command)
	Using More than One Subroutine (The ON GOSUB Command)
	Going to More Than One Place (The ON GOTO Command)
	Give the Computer a LIttle Help (Parentheses)
	Displaying Large Numbers (E Notation)
	Learned In Chapter 11

	12/ Help With Words
	Counting Characters (The LEN Function)
	Combining Words (The Concatenation Operator (+))
	Twisting Words (The LEFT$ adn RIGHT$ Functions)
	Isolating Words (The MID$ Function)
	Learned in Chapter 12

	13/ Saving Programs
	Saving BASIC Programs on Tape (The CSAVE Command)
	Loading BASIC Programs from TApe (The CLOAD Command)
	Saving Many Programs on Tape (The SKIPF Command)
	Hints and Tips
	Learned in Chapter 13

	14/ Editing Programs
	Editing Lines (The EDIT Command)
	Table 14.1 Edit Keys
	Moving the Cursor (The Space Bar, <-, and S Keys)
	Changing Characters (The C Key)
	Deleting Characters (The D Key)
	Inserting Characters (The I Key)
	Hacking Characters (The H Key)
	Killing Characters (The K Key)
	Extending Characters (The X Key)

	Deleting Lines (The DEL Command)
	Renumbering Lines (The RENUM Command)
	Learned in Chapter 14

	15/ A Pop Quiz
	Watching the Keyboard (The INKEY$ Function)
	Beat the Computer (An Example of INKEY$)
	Checking Your Answers (The VAL Function)
	A Computer Typing Test (An Example of INKEY$)
	Learned in Chapter 15

	Part 2/ Having Fun
	16/ Music
	PLAY
	Notes (The NOTE Option)
	Whole Notes, Half Notes, Quarter Notes... (The NOTE Length)
	Dotted Notes (NOTE LENGTH's "." Notation
	Octaves (The OCTAVE Option)
	Volume (The VOLUME Option)
	Rests (The PAUSE Option)
	Tempo (The TEMPO Option)
	Substrings (The SUBSTRING (X) OPTION)
	One Further Note (+,-,<,>)
	Roll Over, Beethoven (An Example of the PLAY Command)
	Learned in Chapter 16

	17/ Pictures
	Setting A Dot (The SET Command)
	Table 17-1 The SET Command's Use of rthe Palette
	The Computer's Face (An Example of SET)
	A Blinking Computer (The RESET Command)
	Reading the Dots (The POINT Function)
	Learned in Chapter 17

	18/ The Talking Computer Teacher
	MOTOR ON/AUDIO ON
	Learned in Chapter 18

	19/ Joysticks
	The Floating Switches (The JOYSTK Function)
	Painting with Joysticks (An Example of JOYSTK)
	The Joystick Buttons (The BUTTON Function)
	Learned in Chapter 19

	Part 3/ Dramatic Images
	20/ Let's Get To The Point
	But First, A Word About Color... (Using Palette to Set up Standard Colors)
	Your First Dot (or Point) (The PSET Command)
	Now You See It...Now You Don't (The PRESET Command)
	Finding a Point (The PPOINT Function)
	Learned in Chapter 20

	21/ Hold That Line!
	Drawing a Line (The LINE Command)
	Drawing Two Lines (An Example of LINE)
	Erasing a Line (The PSET and PRESET Options)
	Boxing a Line (The B Option)
	Fill A Box (The BF Option)
	Learned in Chapter 21

	22/ The Silver Screen
	Displaying the Graphics Screen (The SCREEn Command)
	Table 22.1 Color Set 0
	Table 22.2 Color Set 1

	Changing the Foreground and Background Colors (The COLOR Command)
	Start With the Right Text Screen (The WIDTH Command)
	Clearing the Graphics Screen (THE PCLS Command)
	Learned in Chapter 22

	23/ Minding Your PMODEs
	Table 23.1 /PMODE Settings
	Lines in PMODE 4 (Changing PMODE Setttings)
	Changing Available Positions (PMODE Positions)
	Changing Color Modes (PMODE Colors)
	Table 23.2 Color Set 0
	Table 23.3 Color Set 1

	PMODE Boxes (An Example of Changing PMODES)
	Learned in Chapter 23

	24/ A Different Use Of Color
	Lines in Hot Pink (Graphics Use of the Palette)
	...And A Dash of Charcoal Brown (An Example of Medium Graphics and the Palette)
	Learned in Chapter 24

	25/ Finding The Right Pages
	Table 25.1/ Pages Required for Graphics Screens
	Changing Pages (The PMODE Start-Page Parameter)
	Lines on Different Screens (Changing the Currrent Graphics Screen)
	Flipping Screens (An Example of PMODE Start-Page Parameter)
	Adding Pages (The PCLEAR Command)
	Up and Down, Up and Down (An Example of PCLEAR)
	Copying Pages - The PCOPY Command
	Learned in Chapter 25

	26/ Going In Circles
	CIRCLE
	Coloring the Circle (The Color Option)
	Squeezing a Circle (The Height/Width Option)
	Splitting the Circle (The Arc Option)
	Learned in Chapter 26

	27/ The Big Brush-Off
	PAINT
	Learned in Chapter 27

	28/ Drawing Shapes
	DRAW
	Drawing a Shape (The U,D,L and R Motion Subcommands
	Starting at a Relative Position (The "+" and "-" Signs)
	Reducing and Enlarging a Shape (The Scale Mode)
	Coloring a Shape (The Color Option)
	Drawing Angles (The Angle Mode)
	Drawing A Blank (The Blank Option)
	Drawing from the Same Point (The No Update Option)
	Using Substrings (The X Subcommand)
	Learned in Chapter 28

	29/ The Display Went Array
	How it Works (The GET and PUT Commands)
	GET/PUT
	Storing the Rectangle (The DIM Command)
	Another Kind of Action (The PSET,PRESET,AND,OR and NOT Options)
	Table 29.1 Put Actions
	Learned in Chapter 29

	Part 4/ The Big Picture
	The Real Thing
	Introducing...CoCo 3! (Sample Program no. 22)
	Computer Art (Sample Program no. 29)
	The CoCo Rainbow (Sample Program no.23)
	The Artists Palette (Sample Program no. 24)
	Color Doodle (Sample Program no. 30)
	Going Everywhere at Once (Sample Program no. 5)
	Pick a Lucky Clover (Sample Program no. 17)
	String Art (Sample Program no. 28)
	A Sine of the Times (Sample Program no.9)
	This Fan is a Breeze (Sample Program no. 19)
	I CAD, Can You? (Sample Program no. 7)
	This is your BASIC Tunnel ... (See do it yourself program no. 24-1)
	Looping Loops (Sample Program no.27)
	Colorful Boxes (Sample Program no.25)
	An Electronic Blaket (Sample Program no. 13)
	Build Your Own House (Do it yourself program no. 26-4)

	30/ Thousands Of Dots
	Creating a Graphics Screen (The HSCREEN Command)
	Table 30.1/ HSCREEN Settings
	Producing Graphics on the Screen (The High Resolution Graphics Commands)
	Table 30.2/ High- and Low-resolution Graphics Commands

	A Different Use of Grids (High- v Low-resolution Commands
	A Different Use of Color (High- v Low-reolution Commands
	A Better Way of Printing (The HPRINT Command)
	Learned in Chapter 30

	31/ Graphics Storage
	Reserving aBuffer (The HBUFF Command)
	Table 31.1/ Memory Required for Graphics
	Getting A rectangle into the Buffer (The HGET Command)
	Putting the Rectangle on the Screen (The HPUT Command)
	Learned in Chapter 31

	Part 5/ Getting Down To Business
	32/ Storing Data
	A Program to Output Data (The OPEN, PRINT #, and CLOSE Commands
	OPEN/PRINT/CLOSE
	A Program to Retrieve Data (The INPUT Command)
	Finding the End of File (THE EOF Function)
	Storing More Data
	Learned in Chapter 32

	33/ Numeric Arrays
	A New Kind of Variables (Subscripted Variables)
	A Way of Organizing Subscripted Variables (Arrays and the DIM Command)
	DIM
	Adding a Second Array (Using 2 Arrays)
	Dealing the Cards (An Example of Arrays)
	Learned in Chapter 33

	34/ String Arrays
	Storing Words Into Variables (String Arrays)
	Writing an Essay (An Example of String Arrays)
	Using the Printer (The PRINT # and LLIST Commands)
	Learned in Chapter 34

	35/ Multidimentional Arrays
	Storing Tables of Numbers (2-Dimentional Arrays)
	The Third Dimension (3-Dimentional Arrays)
	Learned in Chapter 35

	Part 6/ Back To Basics
	36/ Numbers
	Arithmetic Functions (The SQR, FIX, ABS, and SGN Functions)
	Trigonometry Functions (The SIN,COS,TAN and ATAN Functions)
	Logarithms and Exponentials (The LOG and EXP Functions)
	Creating Yor Own Function - The DEF FN Command
	Learned in Chapter 36

	37/ Strings
	Displaying Strings of Characters (The STRING$ Function)
	Converting Numbers to Strings (The STR$ Function)
	Searching for Strings (The INSTR Function)
	Replacing Strings (The MID$ Command)
	Characters and Codes - The ASC and CHR$ Functions
	Learned in Chapter 37

	38/ In And Out
	Another Way of Inputting (The LINE INPUT Command)
	Customized Printing (The PRINT USING Command)
	Finding Your Position (The POS Fnction)
	Finding Your High-Resolution Position (The HSTAT Command)
	Checking the Time (The TIMER Function)
	Changing Devices (Using Device Numbers)
	Learned in Chapter 38

	39/ Bugs
	Tracking Bugs (The STOP and CONT Commands)
	For Long Programs (MEM)
	Tracig Bugs (The TRON and TROFF Cmmands)
	Trapping Bugs (The ON ERR GOTO Command)
	Trapping the Right Bug (The ERNO Function)
	Returning to the Right Trap (The ERLIN Function)
	Trapping a Break (The ON BRK GOTO Command)
	Learned in Chapter 39

	40/ Machine-Language Subroutines
	How to Call an ML Subroutine CLEAR,CLOADM,PEEK,POKE,DEFUSR, and USR
	Working Wth Machine Language
	1. Assemble the ML Subroutine into Object Code
	2. Reserve Memory for the ML Subroutine
	3. Store the ML Subroutine in Memory
	4. Tell BASIC Where the ML subroutine Is
	5. Call the ML Subroutine
	6. Return from the ML Subroutine

	Using Stack Space
	Reading and Saving Memory Using PEEK and CSAVEM
	Helpful BASIC Functions (The &H and &O Operators; the HEX$, LPEEK, and LPOKE Functions)
	Learned in Chapter 40

	Part 7/ Odds And Ends
	Suggested Answers To Do-It-Yourself Programs
	Chapters 1-19
	Do-It-Yourself Program 4-4
	Do-It-Yourself Program 5-1
	Do-It-Yourself Program 5-2
	Do-It-Yourself Program 5-3
	Do-It-Yourself Program 9-1
	Do-It-Yourself Program 9-2
	Do-It-Yourself Program 10-1
	Do-It-Yourself Program 12-1
	Do-It-Yourself Challenger Program (Chap. 12)
	Do-It-Yourself Program 16-1
	Do-It-Yourself Program 16-2

	Chapters 20-29
	Do-It-Yourself Program 20-2
	Do-It-Yourself Program 21-1
	Do-It-Yourself Program 21-2
	Do-It-Yourself Program 21-3
	Do-It-Yourself Program 22-1
	Do-It-Yourself Program 24-1
	Do-It-Yourself Program 25-2
	Do-It-Yourself Program 25-3
	Do-It-Yourself Program 26-1
	Do-It-Yourself Program 26-3
	Do-It-Yourself Program 26-4
	Do-It-Yourself Program 27-1
	Do-It-Yourself Program 27-3
	Do-It-Yourself Program 28-1
	Do-It-Yourself Program 28-2
	Do-It-Yourself Program 28-3
	Do-It-Yourself Program 28-4
	Do-It-Yourself Program 28-5
	Do-It-Yourself Program 28-6
	Do-It-Yourself Program 29-1

	Chapters 30-40
	Do-It-Yourself Program 32-1
	Do-It-Yourself Program 33-1
	Do-It-Yourself Program 33-2
	Do-It-Yourself Program 34-1
	Do-It-Yourself Program 34-2
	Do-It-Yourself Program 34-3
	Do-It-Yourself Program 34-4
	Do-It-Yourself Program 35-1
	Do-It-Yourself Program 36-1
	Do-It-Yourself Program 37-1
	Do-It-Yourself Program 37-2
	Do-It-Yourself Program 37-3
	Do-It-Yourself Program 37-4
	Do-It-Yourself Program 38-1
	Do-It-Yourself Program 38-2
	Do-It-Yourself Program 38-3

	Sample Programs
	Sample Programs 1-10
	Sample Program #1
	Sample Program #2
	Sample Program #3
	Sample Program #4
	Sample Program #5
	Sample Program #6
	Sample Program #7
	Sample Program #8
	Sample Program #9
	Sample Program #10
	Sample Program #11

	Sample Programs 11-21
	Sample Program #12
	Sample Program #13
	Sample Program #14
	Sample Program #15
	Sample Program #16
	Sample Program #17
	Sample Program #18
	Sample Program #19
	Sample Program #20
	Sample Program #21

	Sample Programs 22-30 Highlight BASIC Version 2.
	Sample Program #22
	Sample Program #23
	Sample Program #24
	Sample Program #25
	Sample Program #26
	Sample Program #27
	Sample Program #28
	Sample Program #29
	Sample Program #30

	Inventory Shopping List
	Speed Reading
	Memory Test
	Sorting

	Worksheets
	Low-Resolution Text Screen Worksheet (32x16)
	Low-Resolution Text Screen Worksheet (64x32)
	High-Resolution Text Screen Worksheet (40x24)
	High-Resolution Text Screen Worksheet (80x24)
	Low-Resolution Graphics Screen Worksheet (128x96)
	Low-Resolution Graphics Screen Worksheet (128x192)
	Low-Resolution Graphics Screen Worksheet (256x192)
	High-Resolution Graphics Screen Worksheet (320x192)

	BASIC Character Codes
	BASIC Codes 0-127/ Low- and High-Resolution Text Screens
	Table 7.1/ BASIC Codes 0-127/ Low adn High-Resolution Text Screens

	BASIC Codes 128-255/ Low-Resolution Text Screen
	Table 7.2 BASIC Codes 128-255/ Low-Resolution Text Screen

	Codes 128-159/ High-Resolution Text Screen

	Color Codes
	Palette Slots
	Table 7.5 BASIC's Standard Palette (PALETTE CMP or PALETTE RGB)

	Basic Colors
	Low-Resolution Text Screen
	Table 7.6 BASIC's Use of the Palette Low-Resolution Text Screen

	High-Resolution Text Screen
	Table 7.7 BASIC's Use of the Palette High-Resolution Text Screen

	Low-Resolution Graphics Screen
	Table 7.8 Color Specifications Low-Resolution Graphics Screen

	High-Resolution Graphics Screen
	Table 7.9 BASIC Use of the Palette High-Resolution Graphics Screen

	Basic Musical Tones
	Mathematical Formulas Worth Two In The Book...
	Derived Functions
	Valid Input Ranges
	Memory Map
	Color Computer Line Printer Variables
	ROM Routines
	Error Messages
	AO-NO
	OD-UL

	Error Codes
	Basic Commands, Functions, And Operators
	Commands
	ATTR-CLOAD
	CLOADM-DATA
	DEF-DRAW
	EDIT-HBUFF
	HCIRCLE-HGET
	HLINE-HSET
	HSTAT-LINE INPUT
	LIST-ON BRK GOTO
	ON ERR GOTO-PCOPY
	PLAY-PRINT TAB
	PRINT USING-RESET
	RESTORE-TRON
	WIDTH

	Functions
	ABS-ERLIN
	ERNO-LEN
	LOG-RND
	SGN-VARPTR

	Operators

	Index
	A-D
	D-L
	L-R
	R-W

	Limited Warranty
	Back Cover

