TANDY"

DEELT D

COLOR COMPUTER 3
EXTENDED
BASIC

Color Computer 3 System Software:
© 1982, 1986 Microsoft and
and Microware Systems Corporation.
Licensed to Tandy Corporation
All Rights Reserved.

All portions of this software are copyrighted and are the proprietary and trade secret information
of Tandy Corporation and/or its licensor. Use, reproduction or publication of any portion of
this material without the prior written authorization by Tandy Corporation is strictly prohibited.

Color Computer 3 Extended BASIC
© 1986, Tandy Corporation.
All Rights Reserved.

Reproduction or use, without express written permission from Tandy Corporation and/or its
licensor, of any portion of this manual is prohibited. While reasonable efforts have been taken
in the preparation of this manual to assure its accuracy, Tandy Corporation assumes no liability
resulting from any errors or omissions in this manual, or from the use of the information contained
herein.

Tandy and Radio Shack are registered trademarks of Tandy Corporation.

10 9 8 7 6 5 4 3 2 1

Hello Newcomers . ..

If you don’t know a thing about computers, relax—this manual is for you. Using it, you
“program’’ your computer with its own language—Extended BASIC. You'll start by:

Composing music
Creating light shows
Playing games

Painting pictures

If you're eager to get down to business, be patient. Having fun is the fastest way to learn.

So, spend some time with your computer. Type whatever you want. Play with it. Feel at ease!
You have an amazing tool to command.

. . . And Welcome Back Oldtimers

Welcome back to the Color BASIC family! You might already know the original Color BASIC
language. You might also know the expanded Extended Color BASIC language.

The language described in this book—Extended Color BASIC Version 2—is a greater expansion
of Color BASIC and Extended Color BASIC. Using Extended Color BASIC Version 2, you can:

Draw pictures with nearly perfect detail, using hundreds and thousands of screen
positions.

Color pictures with turquoise, indigo, violet, and dozens of other exciting colors.
Create special effects, such as mixing text with high resolution graphics.

View text, and program in 32, 40 or 80 columns.

The table below lists the new commands provided by Extended Color BASIC Version 2.

Chapter Command
1 PALETTE RGB
7 WIDTH, LOCATE, ATTR, (SHIFT)(@) (for true lowercase)
8 PALETTE, PALETTE CMP, PALETTE RGB
19 BUTTON
24 PALETTE
30 HSCREEN, HCIRCLE, HCLS, HCOLOR, HDRAW, HLINE,
HPAINT, HRESET, HSET, HPOINT, HPRINT, PALETTE
31 HBUFF, HPUT, HGET
38 HSTAT

39 ERLIN, ERNO, ONERR, ONBRK

CONTENTS

PART 1 / THE BASICS

1

10

11

13

14

15

Meet Your Computer 3
PRINT SOUND CLS PALETTE RGB (SHIFT)(@)

Your Computer Never Forgets 13
(...unless you turn it off...)

String Variables LET

A Simple Program 17
NEW INPUT GOTO RUN

PRINT, PRINT; LIST

ALOOD 25
FOR/NEXT

AlLoop Within @ Loop 31
Nested FOR/NEXT SHIFT (@)

Decisions, DeCisions 37
IF/THEN END AND/OR

The Screen 43
PRINT @ WIDTH (SHIFD@ LOCATE ATTR

ColOrs . oo 51
PALETTE

Random Chance 55
RND

Reading 59
DATA READ RESTORE INT

Help With Arithmetic 65

GOSUB RETURN REM ON GOSUB ON GOTO
Exponential Notation

Help With Words o 71
LEN LEFT$ RIGHT$ MID$ CLEAR

Saving Programs. 77
CLOAD CSAVE SKIPF

Editing Programs 81
EDIT DEL RENUM

APop QUiz ... 87
INKEY$ VAL

Contents

PART 2 / HAVING FUN

16

17

18

19

MUSIC . . . 95
PLAY
Pictures 103

SET RESET POINT

The Talking Computer Teacher 109
AUDIO MOTOR

Joysticks 115
JOYSTK BUTTON

PART 3 / DRAMATIC IMAGES

20

21

22

23

24

25

26

27

28

29

Let's Gettothe Point 121
PSET PRESET PPOINT

Hold That Line 125
LINE COLOR

The Silver Screen 129
SCREEN PCLS

Minding Your Pmodes 133
PMODE

A Different Use of Color 137
PALETTE

Finding the Right Page 141
PCLEAR PMODE PCOPY

Going in Circles 147
CIRCLE

The Big Brush-Off 153
PAINT

Drawing Shapes 155
DRAW

The Display Went That Array 163
GET PUT

PART 4 / THE BIG PICTURE

30

31

Thousands of DOtS 169
INKEY$ VAL

HCOLOR HDRAW HLINE HPAINT

HRESET HSET HPOINT HPRINT

Graphics Storage 173
HBUFF HPUT HGET

Contents

PART 5/ GETTING DOWN TO BUSINESS

32 Storing Data 179
OPEN CLOSE PRINT #-1 INPUT #-1 EOF

33 NUMEHC AITAYS . . o o 183
DIM
34 SHING AMTAYS . .o 189

LLIST PRINT #-2
35 Multidimensional Arrays 193

PART 6 / BACK TO BASICS

36 NUMbErs 201
SQR SIN COS TAN ATN LOG EXP FIX DEF FN SGN ABS

37 SHNGS o 207
STRING$ INSTR MID$ STR$ ASC CHR$

38 Inand Out 215
LINE INPUT PRINT USING POS HSTAT TIMER

39 BUGS . o 225

STOP CONT MEM TRON TROFF ERLIN ERNO ONERR ONBRK

40 Machine Language
DEFUSR VARPTR PEEK POKE EXEC
HEX$ LPEEK LPOKE

Contents

PART 7 / ODDS AND ENDS

Suggested Answers to Do-it-Yourself Programs 239
Sample Programs 257
WOrksheets 281

Low Resolution Text Screens
High Resolution Text Screens
Low Resolution Graphics Screens
High Resolution Graphics Screens

BASIC Character COAESo 289
Codes 0-127/Low and High Resolution
Codes 128-255/Low Resolution
Codes 128-255/High Resolution

Color Codes e 295
Palette SIOts 297
BASIC Colorso 299
BASIC Musical TONES 303
Mathematical Formulas 305
Derived FUNCHONS 307
Valid Input Ranges 309
Memory Map 311
Line Printer Variables e 313
ROM ROULINES oo 315
BASIC Error MESSagesot 319
Error Codes o 321
BASIC Summary 323
DX . 341

Vi

PART 1 / THE BASICS

In this part, you'll learn how to program. But before you start, put yourself in the right frame
of mind.

e Feel comfortable. You don't have to understand everything at one time.
e Try out your own ideas. You don’t have to do everything our way.
e Have fun and enjoy your color computer!

Ready? Turn the page and begin.

1 / MEET YOUR COMPUTER

This chapter and the next introduce you to your computer—the way it works, some of its talents,
and even a couple of its quirks. By the time you reach Chapter 3, you'll be ready to program.

This is How to Start
(Power Up)

Connect your computer to a television set or to a video monitor. Instructions on how to do
this are in the introduction manual, Introducing Your Color Computer 3, that comes with your
color computer.

Then:

1. Turn on the television set or video monitor.

2. If you use a television set, select Channel 3 or 4 and set the antenna switch to COMPUTER.
3. Turn on your computer. The POWER button is on the left rear side of your keyboard.
The BASIC startup message appears on your screen:

EXTENDED COLOR BASIC v.r
COPR. 1982, 1986 BY TANDY
UNDER LICENSE FROM MICROSOFT
AND MICROWARE SYSTEMS CORP.

(v.r is the number specifying which version and release of BASIC you have.)

If the BASIC startup message does not appear on your screen:
e Turn off your computer. Wait 30 seconds, and turn on your computer again.
* Adjust the brightness and contrast on your television set or video monitor.
e (Check all the connections.

If the screen still does not show the BASIC startup message, refer to " Troubleshooting and
Maintenance’ in your introduction manual.

When the screen shows the BASIC startup message, you're ready to begin.

Using the Keyboard
(The Keys)

Experiment with the keyboard, and type whatever you want. You are now in the uppercase-
only mode. This means that all the characters you type appear on your screen as uppercase
(capital) letters. The letters show as dark characters on a light colored screen.

Hold down the (SHIFT) key and press (#). Then, release both keys, and type some more
characters. Now, the characters appear in reversed colors (light characters on a dark
background). If the characters do not appear in reversed colors, press (SHIFT)(@) again. Be
sure to hold down (SHIFT) before pressing (@).

1 / Meet Your Computer

By pressing (SHIFD@), you enter the upper/iowercase mode. The lowercase letters you type
appear in reversed colors, and the uppercase letters you type appear in normal colors.

To type an uppercase letter, use the key, just as you would on a typewriter. Hold
down (SHIFT), and type the letter you want in uppercase letters.

Now, return to the uppercase-only mode by pressing again. You will find it easier
to be in the uppercase-only mode when you enter commands.

Entering a Command
(The PRINT Command)

Press the key. Don't worry about anything but the last line of type on your screen.
It says:

oK

OK is the computer’s prompt. It's telling you, ““OK, I'm ready when you are.”

Give the computer your first command. Type this exactly as it is below:
PRINT "HI, I'M YOUR COLOR COMPUTER"

When you reach the right side of your screen, keep typing. The last part of the message appears
on the next line.

This should be on your screen:

0K
PRINT ""HI, I'M YOUR COLOR COMPUT
ER'I

1 / Meet Your Computer

Now check your line. Did you put the quotation marks in correctly? Did you type the word
PRINT in uppercase letters? (The computer does not understand commands typed in
lowercase.)

If you made a mistake, simply press the (=2 key, and the last character you typed disappears.
Press it again, and the next to the last character disappears (and so on). Now, type the correct
characters.

Ready? Press the (ENTER) key and watch. Your screen looks like this:

0K

PRINT "HI, I'M YOUR COLOR COMPUT
ERI'

HI, I'M YOUR COLOR COMPUTER

0K

Your computer followed your instructions by printing the message you have in quotes on your
screen.

Entering Numbers
(Numbers v Strings)

Have the computer print another message. Type:
PRINT "2"
Press (ENTER). The computer prints your message.

Try another one:

PRINT "2 + 2" (ENTER)

1 / Meet Your Computer

The computer prints:
2+2

You probably expect much more than an electronic mimic . . . maybe some answers! Give
your computer some numbers without the quotation marks. Type:

PRINT 2 + 2 (ENTER)
This time the computer prints the answer:
4

The quotation marks obviously have a meaning. Experiment with them some more. Type each
of these lines:

PRINT 5+4 (ENTER

PRINT "5+4" (ENIER)

PRINT "S5+4 EQUALS" 5+4 (ENTER
PRINT 6/2 "1S 6/2'" (ENTER)
PRINT "8/2" (ENTER)

PRINT 8/2 (ENTER:

Any conclusions?

RULES ON STRINGS v NUMBERS

The computer sees everything you type as strings or numbers. If it's in quotes, it's
a string. The computer sees it exactly as it is. If it's not in quotes, it's a number.
The computer calculates it as a numerical problem.

1 / Meet Your Computer

A Color Calculator
(+s T /5 *s and)

Any arithmetic problem is a snap for the computer. Do some long division. Type:
PRINT "3862 DIVIDED BY 13.2 1S'" 3862/13.2 (ENTER.

Do a multiplication problem:
PRINT 1589 * 23

Notice that the computer uses an asterisk (*) for multiplication.

You can raise a number to a power by using the (4) key. To print 3 to the power of 2, type:
PRINT 3 (1) 2 (ENTER)

Try a few more problems:

PRINT "15 * 2 = " 15%2 (ENTER)
PRINT 18 » 18 ""IS THE SQUARE OF 18" (ENTER)
PRINT 33.33/22.82 (ENTER)

Now it's your turn. Write two commands that print these two problems and their answers:

167 /13.2 =
95 * 43 =

DO-IT-YOURSELF COMMANDS

If you use the correct commands, this is what the computer prints on your screen:

157 /7 13.2=11.8939394%
95 * 43 = 4085

Ready for the answers? The correct commands are:

PRINT "157 / 13.2 ="157/13.2
PRINT "95 % 43 =" 95%43

1 / Meet Your Computer

Making Mistakes
(Error Messages)

Type this line, deliberately misspelling the word PRINT as “PRINT":
PRIINT "HI" (ENTER)
The screen shows:

?SN ERROR

7SN ERROR stands for syntax error. This is the computer’'s way of saying, “PRIINT is not
in my vocabulary. | have no idea what you want me to do.”” Any time you get the ?SN error,
you probably made a typing error.

The computer also gives you error messages when it does understand what you want it to
do, but it feels you're asking it to do something that is illogical or impossible. For instance, try this:

PRINT 5/¢ (ENTER)
The screen shows:
?/® ERROR
which means, 'l can't divide by 0—that's impossible!”

If you get an error message you don't understand, flip to the Appendix. We've listed all the
error messages there and what probably caused them.

A Screen of a Different Color
(The CLS Command)

So far, all you've seen your computer do is display characters on a green screen. But your
color computer has other colors too. Type:

CLS8 (ENTER)

Now, your screen is orange with a green stripe at the top. Your command told the computer
to clear the screen and display Color 8—orange.

But why the green stripe? The computer must use the current background color whenever
it displays characters. Later, you'll learn how to change the background color, but for now,
the background color is green. Type some more characters. The computer uses a green
background for them also.

Press to get the OK prompt. Now type:
CLS4 (ENTER

1 / Meet Your Computer

You see a green stripe at the top, as before, and the rest of your screen is one of two colors.

¢ |f you have a television set or a composite monitor, the rest of your screen is red.
(Throughout this book, we refer to these displays as CMP monitors.)

e |If you have an RGB monitor, the rest of your screen is black.

Some colors, such as Color 4, look different on a CMP monitor than they look on an RGB
monitor.

You can produce nine colors with the CLS command. To see them, enter CLS with any number
in the range 0O to 8. (If you enter a number outside the range 0 to 8, the screen shows the
error message MICROSOFT.)

Now, try CLS without a number:
CLS (ENTER)

When you don’t use a number, the computer assumes you want to display the current
background color which, at this point, is green.

The Standard Colors
(The PALETTE Command)

The nine colors that you can produce with the CLS command on a CMP monitor are the color
computer’s standard colors. In most of this book, we use the standard colors.

The standard colors are:

CLS Standard
Number Color

Black
Green
Yellow
Blue
Red

Buff
Cyan
Magenta
Orange

O~NOOOhs WN = O

If you have an RGB monitor, you can produce the standard colors by entering the PALETTE
RGB command. Type:

PALETTE RGB (ENTER)

Now, you can use the CLS command to produce the standard colors on your RGB monitor.
For example, type:

CLS4 (ENTER)

Before you entered the PALETTE RGB command, CLS4 made your screen black. Now, CLS4
makes your screen red.

From this point on, remember: If you have an RGB monitor and want to produce the standard
colors, you must enter the PALETTE RGB command each time you turn on your computer.

1 / Meet Your Computer

Computer Sound Off—One, Two...
(The SOUND Command)

Type this:

SOUND 1,100 (ENTER)

If you don't hear anything, turn up the volume and try again.

What you're hearing is six seconds of the lowest tone the computer can hum. How about
the highest tone? Type:

SOUND 255,100 (ENTER)

The second number tells the computer how long to hum the tone. You can use any number
in the range 1 to 255. Try 1:

SOUND 128,1 (ENTER

The computer hums the tone for about 6/100ths of a second. Try 10:

SOUND 128,10 (ENTER)
The computer sounds the tone for 6/10ths of a second.

Try different number combinations, but keep each number in the range 1 to 255. (If you enter
a number outside the range 1 to 255, the screen shows error message ?FC ERROR.)

10

1 / Meet Your Computer

Say It in Its Own Words
(Command Syntaxes)

In this chapter, you have learned about four commands—PRINT, SOUND, CLS, and PALETTE.
In learning about these commands, you have learned the formats or the syntaxes that you
need to use when you enter them.

Later, you might forget the syntax for a certain command. For this reason, each time we
introduce a new command, we include the command’s syntax. The syntax is in a box so it
is easy to find.

In many of the syntaxes, we use italicized words or abbreviations to represent information
that you need to provide. For example, in the PRINT syntax, message represents an actual
message (such as “HI, I'M YOUR COLOR COMPUTER”) that you need to provide.

The syntax for PRINT is:

PRINT message Prints message on the display. The message can be a string (in which
case BASIC prints the string exactly as it is), or a number (in which case BASIC prints
the number’s value).

The syntax for CLS is:

¢LS ¢ Clears your text screen and displays Color ¢ on it. ¢ is a number from 0 to
8 representing the color you want displayed. If you omit ¢, BASIC displays the current
background color.

The syntax for SOUND is:

SOUND n7, n2 Sounds the specified tone (n7) for a specified period of time (n2). n1
is a number in the range 1-255. n2 is a number in the range 1-255.

The syntax for PALETTE is:

PALETTE RGB Sets the computer to display the standard colors on an RGB monitor.

Learned in Chapter 1

COMMANDS KEYBOARD CONCEPTS
CHARACTERS
PRINT =) string v numbers
SOUND (ENTER) error messages
CLS (SHIFT)(®) syntax
PALETTE

A refresher like this is at the end of each chapter. It helps you make sure you didn't miss
anything.

11

2 / YOUR COMPUTER
NEVER FORGETS
(... unless you turn it off ...)

One skill that makes your computer so powerful is its memory. In this chapter, you learn how
to get the computer to remember any information you want.

This Is How It Works...
(The LET Command)

Have the computer “remember’’ the number 13. Type:
A=13

Now, type whatever you want. When you're done, press (ENTER). See if the computer
remembers what A means by typing:

PRINT A (ENTER)

Your computer remembers that A is 13 as long as you have it on . . . or until you do this. Type:
A = 17.2 (ENTER)
Now, if you ask it to PRINT A, it prints 17.2.

You don't have to use the letter A. You can use any letter from A to Z. In fact, you can use
any two letters from A to Z. Type:

B = 15 (ENTER)
C = 20 (ENTER)
BC = 25 (ENTER)

Now, have the computer print all the numbers you asked it to remember. Type:

PRINT A, B, C, BC (ENTER)

13

2 / Your Computer Never Forgets

If you want the computer to remember a "'string’’ of letters or numbers, use a letter with a
dollar sign ($). Type:

AS = "TRY TO"
BS = "REMEMBER"
C$ = "THIS, YoU"

BC$ = "GREAT COMPUTER"
Then type:

PRINT AS, BS, C$, BCS (ENTER)

Computer programmers have a name for all the letters you used: variables. So far, you used
these variables:

YOUR COMPUTER'S MEMORY

NUMBERS CHARACTERS

A=172 A$ = “TRY TO"

B =15 B$ = "REMEMBER”

C=20 C8% = "THIS, YOU”

BC = 25 BC$ = "GREAT COMPUTER"

Spot-check the above variables to see if the computer remembers the right information. For
instance, to see if BC still contains 25, type:

PRINT BC (ENTER)

Think of variables as little boxes in which you can store information. One set of boxes is for
strings; the other set is for numbers. Each box has a label.

You can store information in a variable or change the information that is already stored in
an existing variable by entering a simple command such as A=5. This simple command is
actually called the LET command, but the color computer lets you omit the word LET.

The syntax for the LET command is:

LET variable=value Assigns a value to a variable. You can omit the word LET and simply
type variable = value.

Note: Some versions of BASIC require that you include the word LET. With the color
computer, the word LET is optional.

14

2 / Your Computer Never Forgets

Rules, Rules, Rules . ..
(The TM Error)

Whenever you store data into variables, you need to make sure you follow these rules.
RULES ON STORING DATA INTO VARIABLES

¢ Datain quotes s string data. You can store string data only in string variables (variables
with a $ sign).

* Data not in quotes is numeric data. You can store numeric data only in numeric
variables (variables without a $ sign).

As an example of what happens when you disobey these rules, type these four commands:

D = "4!" (ENTER)

2 ="THIS IS STRING DATA" (ENTER)
D$ = 6 (ENTER)

Z$ = 12 (ENTER)

The computer responds to each of these commands with 2 TM ERROR (Type-Mismatch Error).
This is because each of them attempts to store data into the wrong kind of variable.

¢ The first two commands attempt to store string data into numeric variables.
* The second two commands attempt to store numeric data into string variables.
Type these commands, which the computer accepts:

D$ = "6"
Z$ ="THIS IS STRING DATA" (ENTER)

D = 6 (ENTER)
Z = 12 (ENTER)

You've now added this to your computer’'s memory.

YOUR COMPUTER'S MEMORY

NUMBERS STRINGS
D—6 D$—6"
/=12 Z$=>"THIS IS STRING DATA"

A New Kind of Arithmetic
(Using Numeric Variables)

Now, do something interesting with what you told the computer to remember. Type:
PRINT D » 2

The computer prints the product of D times 2. (The computer remembers that D equals 6.)

15

2 / Your Computer Never Forgets

Try this line:
PRINT Z/D
The computer prints the quotient of Z divided by D.
Would this work?
PRINT D$ * 2 (ENTER)
Did you try it? You see ? TM ERROR. The computer cannot multiply string data.

Cross out the commands below that the computer rejects:

EXERCISE WITH VARIABLES

F = 229999999

M =192

DZ$ = "REMEMBER THIS FOR ME"
M$ = 15

Z =F+F

Finished? These are the commands the computer accepts.

F = 22.9999999
DZ$ = "REMEMBER THIS FOR ME"
Z=F+F

RULES ON VARIABLES

You can use any two characters from A to Z for a variable. The first character must
be aletter from A to Z. The second can be a letter or a number. If you want to assign
string data to the variable, put a dollar sign after the variable. Otherwise, the variable
can hold only numeric data. String variables can store up to 249 characters.

Learned in Chapter 2
CONCEPTS

Variables
String v Numeric Variables

16

3 / A SIMPLE PROGRAM

You've learned some commands. Now, all you need to do is combine them into a program.

A Simple 1-Line Program
(The NEW and RUN Commands)

Type:
NEW (ENTER)

This command erases whatever might be in the computer's memory.
Now type this line. Be sure you type the number 10 first—that's important.

Did you press (ENTER)Y? Nothing happened, did it? Nothing you can see, that is. You just wrote
your first program. Type:

RUN (ENTER)

The computer runs your program. Type RUN again and again to your heart's content. The
computer runs your program any time you wish, as many times as you wish.

In your first program, you used two new commands: NEW and RUN. Their syntaxes are:
NEW Clears memory.

RUN /ine numbers Runs the specified line numbers. line numbers is optional; if omitted,
the entire program runs.

3 / A Simple Program

And Now, A 2-Line Program
(The LIST Command)

Your first program works well; so add another line to it. Type
2¢® PRINT “"WHAT IS YOUR NAME?' (ENTER)
If you make a mistake in typing this line, or any other line, simply type the line over again.
Now, type:
LIST (ENTER)
The computer displays the entire program. Your screen shows.

1¢ PRINT “"HI, I'M YOUR COLOR COMPUTER"
20 PRINT "WHAT IS YOUR NAME?"

The command that you used to display the program is the LIST command. Its syntax is:

LIST line numbers Displays the specified line numbers. Line numbers is optional; if
omitted, the entire program displays.

Entering Your Name
(The INPUT Command)

Run the program. Type:
RUN ENTER:

The computer displays:

HI, I'M YOUR COLOR COMPUTER
WHAT IS YOUR NAME?

What do you suppose would happen If you answer the computer’'s question? Try it.

When you simply type your name, the computer doesn’t understand what you mean. In fact,
the computer can only understand what you mean when you talk to it in its own language.

Use a word the computer understands: INPUT. The syntax for INPUT is:

INPUT “message’’; vanable Prints your message; then, waits for you to input information
and labels that information as variable. Message 1s optional. If you use “message”,
remember to use a semicolon after the “message’’.

Change Line 20 so it uses the word INPUT rather than PRINT. How do you change a program
ine? Simply type it again using the same line number. Type:

20 INPUT “"WHAT IS YOUR NAME"; A$ (ENTER
This tells the computer to:

. PRINT "WHAT IS YOUR NAME".
e Wait for you to type some characters and press (ENTER
e Label the characters you type as AS$.

18

3 / A Simple Program

Add one more line to the program:
30 PRINT "HI," AS
Now, list the program again to see if yours looks like ours. Type:
LIST
The program looks like this:

10 PRINT "HI, I'M YOUR COLOR COMPUTER"
20 INPUT "WHAT IS YOUR NAME?"; AS
30 PRINT "HI,'" A$

Can you guess what will happen when you run it? Try it:
RUN (ENTER)

That worked well, didn't it? This is probably what happened when you ran the program
(depending on what you typed as your name):

HI, I'M YOUR COLOR COMPUTER
WHAT IS YOUR NAME? JANE
HI, JANE

RUN the program again using different names. For example:

HI, I'M YOUR COLOR COMPUTER
WHAT IS YOUR NAME? HUGO
HI, HUGO

Again and Again
(The GOTO Command)

By using another new command-—called GOTO—you can have the computer run the same
commands over and over. GOTQ's syntax is:

GOTO line number Goes to line number.
Type this line:

49 GOTO 30

80000000008
BRNAMESS

O0000000O000

Now, run the program. The computer prints your name again and again without stopping.
GOTO tells the computer to go back to Line 30:

10 PRINT "HI, I'M YOUR COLOR COMPUTER"
20 INPUT "WHAT IS YOUR NAME?"; AS$

30 PRINT "HI," AS$

49 GOTO 30

19

3 / A Simple Program

Your program now runs perpetually. Each time it gets to Line 40, it goes back to Line 30.
We call this a loop. You can stop this endless loop in two ways:

¢ Hold down (SHIFT) and press (@). This pauses the program. Press any key to
continue the program.

e Press (BREAK). This ends the program.

Print Spacing
(The PRINT, and PRINT; Commands)

Press (BREAK) to end the program.

You can make a hig change simply by adding a comma or a semicoion to the PRINT command.
Try the comma first. Type Line 30 again, but with a comma at the end:

3¢ PRINT "HI," AS$,
Run the program. The computer displays everything in two columns.
Press (BREAK) and try the semicolon. Type:

30 PRINT "HI,'" AS$;

Now, run the program. You probably won't be able to tell what the program’s doing until you
press (BREAK). See how the semicolon crams everything together?

RULES ON PRINT PUNCTUATION
This is what punctuation at the end of a PRINT line does:
= A comma makes the computer go to the next column. Use it to print in columns.

* A semicolon makes the computer stay where it is. Use it to pack what you print
together.

= No punctuation makes the computer go to the next line. Use it to print in rows.

A Compact Program
(The Colon (3))

By now, you might assume that each new command you add to a program must begin on
a new line. Actually, you can combine several commands into one line using a colon (:) to
separate them.

For example, you could combine all four commands in the above program into one line. First,
change Line 10 so that it includes all four commands. Type:

1¢ PRINT "HI, I'M YOUR COLOR COMPUTER":INPUT "WHAT IS
YOUR NAME?'"; AS:PRINT "HI," AS$;

20

3 / A Simple Program

Then, delete Lines 20, 30, and 40, by typing:

20 (ENTER
39 (ENTER
40 (ENTER

Now, run the program. It should work the same way it did when it was three lines.

Combining commands conserves memory and is useful when you write a long program that
requires a large amount of memory. The problem with combining commands is that it makes
a program more difficult to read and understand. We want all the programs in this manual
to be easy to understand; so in most of this manual, we won’t combine commands.

RULES ON ENTERING PROGRAM LINES
e A program line consists of one or more commands, separated by colons (:).

* A program line can contain as many commands as you want to include, providing
that the entire line has 249 characters or less.

Changing The Program
(Inserting, Deleting, and Changing Program Lines)

You may not realize it, but you now know three ways to change a program. Here's a summary:

e You can insert a program line by entering the line. BASIC will automatically insert
the line at the correct place in the program. All line numbers go in ascending numeric
sequence. For example, to insert Line 20 between lines 15 and 22, type:

20 PRINT "IT'S EASY TO CHANGE A PROGRAM"
(ENTER)

* You can change a program line by entering the line over again. For example, to
change Line 20, type:

29 PRINT "SIMPLY TYPE THE LINE OVER AGAIN"
(ENTER)

* You can delete a program line by entering only the line number. For example, to
delete Line 20, type:

20 (ENTERS

21

3 / A Simple Program

Color/Sound Demonstration
(An Example of a Program)

Want to play with color and sound some more? First, erase memory. Type:
NEW (ENTER)
Then, enter this program:

10 PRINT ""TO MAKE ME CHANGE MY TONE"

20 INPUT "ENTER A NUMBER FROM 1 TO 255"; T
3¢ SOUNDT, 50

49 GOTO 10

Run the program to get a sample of the computer’s tones.
What happens if you change Line 30 to:
39 SOUND S5O, T

Hint: Look back in Chapter 1 where we talk about SOUND.

Know the answer? If you make the above change, the computer hums the same tone each
time, but for a different length of time.

DO-IT-YOURSELF PROGRAM

First, press (BREAKD, then erase this program by typing NEW. Now see if you can
write a program, similar to the one above, to make the computer show a certain color.
Remember, you can display nine colors with the CLS command, O through 8.

This is our program:

10 PRINT "TO MAKE ME CHANGE MY COLOR"

20 INPUT "TYPE A NUMBER BETWEEN @ AND 8"; T
30 CLST

49 GOTO 1@

Add Polish to the Program
(The IF/THEN Command)

Pressing the (BREAK) key is an abrupt way to stop the program. Why not have the computer
politely ask if you're ready to end?

Press to stop the program. Then change Line 40 to:

40 INPUT "DO YOU WANT TO SEE ANOTHER COLOR?'; R$
Then, add this line:

50 IFR$ ="YES'" THEN 20

Run the program. Type YES and the program keeps running. Type anything else and the
program ends.

22

3 / A Simple Program

This is what the program looks like now:

10 PRINT "TO MAKE ME CHANGE COLORS"

20 INPUT "TYPE A NUMBER BETWEEN ® AND 8"; T

30 CLST

49 INPUT '"DO YOU WANT TO SEE ANOTHER COLOR"; RS
5¢ IFR$ ="YES" THEN 20

This is what the new lines do:

e Line 40 prints a question and tells the computer to stop and wait for an answer: R$.

e Line 50 tells the computer to go back to Line 20 If (and only if) your answer (R$)
is yes.” If not, the program ends, because it has no more lines.

Learned in Chapter 3

COMMANDS CONCEPT KEYBOARD
NEW Change lines (BREAK)
RUN Insert lines (SHIFT)(@
LIST Delete lines)

INPUT Combine commands
GOTO Create loops

PRINT,

PRINT;

IF/THEN

23

4 / ALOOP

In this chapter you experiment with computer sound effects. First, you need to use two new
commands, FOR and NEXT, to teach the computer to count.

How to Count
(The FOR and NEXT Commands)

FOR and NEXT are two commands, but they are always used together. Their syntaxes are:

FOR variable=n1 TO n2 STEP n3 Stores n1 in variable and, each time the computer
loops back to FOR, adds n3 to variable. STEP n3 is optional: if omitted, the computer
uses STEP 1.

NEXT variable |f variable is less than or equal to n2, loops back to the corresponding
FOR command. Otherwise, BASIC proceeds to the next command.

These syntaxes might make FOR and NEXT sound complicated, but they are actually simple
to use. Type in NEW to erase memory, then type:

10 FORX=1T010

20 PRINT "X ="X

3¢ NEXT X

49 PRINT "I HAVE FINISHED COUNTING"

Run the program.

25

4 / A Loop

Before trying to figure out what FOR and NEXT do, replace Line 10 with each of the lines
below and run the program four more times.

10 FORX=1T0100
10 FORX=5T015
10 FORX=-2T02
10 FOR X =20 TO 24

FOR and NEXT make the computer count. Look at the last version of the program:

10 FORX=20T0 24

2¢ PRINT "X =1'"X

3¢ NEXT X

490 PRINT "I HAVE FINISHED COUNTING"

Line 10 tells the computer the first number is 20 and the last number is 24. It uses X to label
all these numbers.

Line 30 tells the computer to keep going back to Line 10 for the next number (the NEXT X)
until it reaches the last number (number 24).

Look at Line 20. Since Line 20 is between the FOR and NEXT lines, the computer prints the
value of X each time it counts:

X=2¢
X =21
X =22
X =23
X =24

Add another line between FOR and NEXT:
15 PRINT *. .. COUNTING ...""

Run the program. Your computer executes any lines you choose to insert between FOR and
NEXT.

DO-IT-YOURSELF PROGRAM 4-1
Write a program that makes the computer print your name 10 times.

Hint: The program must count to 10.

DO-IT-YOURSELF PROGRAM 4-2
Write a program to print the multiplication tables for 9 (9*1 through 9*10).
Hint: PRINT 9*X is a perfectly legitimate command.

DO-IT-YOURSELF PROGRAM 4-3
Write a program that prints the multiplication tables for 3*1 through 9725,

Hint: By adding a comma in the PRINT line, you can get all the problems and results
on your screen at once.

26

4 / A Loop

Finished? These are our programs:

Program 4-1

1¢ FORX=1TO019
20 PRINT "THOMAS"
3¢ NEXT X

Program 4-2

10 FORX=1T010
20 PRINT "9#''X'"="9xX
30 NEXT X

Program 4-3

10 FOR X =1T025
20 PRINT "9#"X'"'="Q¥X,
30 NEXT X

Counting by Two’s
(The STEP Option)

Now, have the computer count in a slightly different way. Erase your program by typing NEW

(ENTER). Then, type this new program:
10 FORX=2TO10 STEP 2

20 PRINT "X="X
30 NEXT X

49 PRINT "I HAVE FINISHED COUNTING"

27

4 / A Loop

Run the program. Do you see what STEP 2 does? It makes the computer count by 2's. Line
10 tells the computer that:

e The first X is 2
e The last X is 10
. AND STEP 2 ...

e Alithe X's between 2 and 10 are 2 apart (2, 4, 6, 8, 10). STEP 2 tells the computer
to add two to get each NEXT X.

To make the computer count by 3’s, make all the X's 3 apart. Try this for Line 10:
10 FORX=3TO1¢ STEP 3
Run the program. Your screen shows:

3
6
9

x >xX X
"

Here are more FOR ... STEP lines If you want some more practice:

1@ FORX=5TO50 STEP 5
10 FORX =10 T0 1 STEP -1
10 FORX =1TO0 20 STEP 4

You may be wondering about the programs you ran at the first of this chapter without using
STEP. If you omit STEP, the computer assumes you mean STEP 1.

Counting the Sounds
(An Example of FOR/NEXT)

Now that you taught the computer to count, you can add some sound. Erase your old program,
and type this:

10 FOR X =1 T0 255
2% PRINT "TONE " X
39 SOUND X, 1

49 NEXT X

This program makes the computer count from 1 to 255. Each time it counts a new number,
it does what Lines 20 and 30 tell it to do:

e Line 20 prints X, the current count.
e Line 30 sounds X's tone.
For example:
e The first time the computer gets to FOR, in Line 10, it makes X equal to 1.
e Then, it goes to Line 20 and prints 1, the value of X.
e Line 30 has it sound tone #1.
e Then, it goes back to Line 10 and makes X equal to 2.

e |t repeats this process until X =255 or you press (BREAK).

28

4 / A Loop

What do you think the computer will do if you make this change to Line 10:

10 FOR X =255T01 STEP -1

PROGRAMMING EXERCISE

Using STEP, change Line 10 so the computer sounds tones from:

1 The bottom of its range to the top, humming every tenth note.

2 The top of its range to the bottom, humming every tenth note.

3 The middle of its range to the top, humming every fifth note.

10

10

10

Ready for the answers?

10 FORX=1T0255STEP 10
10 FOR X =255T0 1 STEP -190
1@ FOR X =128 TO 255 STEP 5

DO-IT-YOURSELF PROGRAM 4-4

Now, see if you can write a program that makes the computer hum:

1 from the bottom of its range to the top, and then
2 from the top of its range back to the bottom

The answer to this, and the remaining "' Do-ft-Yourself'” programs are in the back of this book.

But Can It Sing?

Yes. In Chapter 11, you'll learn how to have the computer play your favorite songs.

Learned in Chapter 4
COMMANDS

FOR..TO...STEP
NEXT

29

5 / A LOOP WITHIN A LOOP

Now that you know how to use FOR/NEXT, you can have the computer keep time. First, use
FOR/NEXT to set a timer pause. Then, use a nested FOR/NEXT to build a clock.

Setting a Timer Pause
(A Practical Use of FOR/NEXT)

Type:

10 FORZ =1TO0 460 * 2
20 NEXT Z
39 PRINT "I COUNTED TO 920"

Run the program. Be patient and wait a few seconds. Two seconds, to be precise. It takes
the computer two seconds to count to 920.

Lines 10 and 20 set a timer pause. By making the computer count to 920, you keep the
computer busy for two seconds.

This is groundwork for a stopwatch. Erase the program, and type:

19 PRINT "HOW MANY SECONDS?"
20 INPUT S

30 FORZ=1T0460%S

49 NEXT Z

5¢ PRINT S '" SECONDS ARE UP! ! I

Run the program. Enter the number of seconds you want timed.

31

5 / A Loop Within A Loop

DO-IT-YOURSELF PROGRAM 5-1

It would help if the stopwatch could sound some kind of alarm. Add lines to the end
of the program to give it an alarm.

A Loop Within a Loop
(Nested FOR/NEXT Commands)

Before making an actual clock, you need to know how to use a FOR/NEXT loop within a
FOR/NEXT loop.

Type this new program:

10 FORX=1T03
20 PRINT "X = ' X
30 FORY =1T0 2
4@ PRINT, "y="y
56 NEXTY
60 NEXT X

Run it. This should be on your screen:

X =1
Y =1
Y =
X =2
Y =1
Y =
X=3
Y =1
Y=2

Programmers call this a nested loop. This is what the program does:
I. It counts X from 1 to 3. Each time it counts X:
A. It prints the value of X
B. It counts Y from 1 to 2. Each time it counts Y, it prints the value of Y.

C. When it finishes counting the Y's, it goes back to count the next X (Line 10).

32

5 / A Loop Within A Loop

II. When it finishes counting the X's, the program ends.
As an alternate way of writing this program, you can combine Lines 50 and 60 into one line.

16 FORX=1T03
20 PRINT "X =1"X
30 FORY=1T02
4@ PRINT, "Y="Y
50 NEXTY, X

Line 50 tells the computer to go back for the next Y, then, when it finishes counting all the
Y's, go back for the next X.

Regardless of which way you write the program, whenever you use nested loops, be sure
to close the inner loop before closing the outer loop.

Right Wrong
18 FORX=1T03 19 FORX=1T03
20 FORY=1T02 20 FORY=1T02
30 NEXTY 39 NEXT X
49 NEXT X 49 NEXT Y

Right Wrong
19 FORX=1T03 19 FORX=1T03
20 FORY=1702 20 FORY=1T02
39 NEXT Y, X 30 NEXT X, Y

A Computer Clock
(Example of Nested FOR/NEXT Commands)

This example shows how to use nested FOR/NEXT commands to make a cornputer clock. Type:

19 FORS=0T059

15 CLS

20 PRINT S

30 SOUND 150, 2

49 FORT=1T0390

50 NEXTT

60 NEXT S

79 PRINT "1 MINUTE IS UP"

33

5 / A Loop Within A Loop

Run the program. This 1s what the program does:
I. It counts the seconds from 0 to 59 (Lines 10 and 60). Each time it counts one second.
A. It clears the screen (Line 15),
B. It prints the second (Line 20).
C. It sounds a tone (Line 30).
D. It pauses long enough for one second to pass (Lines 40 and 50).

[l When it inishes counting all the seconds from 0 to 59, it prints a message that one minute
has passed (Line 70).

This 1s a full-fledged clock:

1@ FORH=0TO23
20 FORM=07059
30 FORS=0T059
49 CLS

50 PRINT H':"M":"§
6® SOUND 150, 2

706 FORT=1T0375
80 NEXTT

9® NEXT S

100 NEXTM

171® NEXTH

When you run this program, the computer does this:
! it counts the hours from 0 to 23 (Line 10). Each time it counts a new hour:
A. It counts the minutes from 0 to 59 (Line 20). Each time 1t counts a new minute:

1. It counts the seconds from 0 to 59 (Lines 30 and 80). Each time it counts a new
second:

a. It clears the screen (Line 40).

b. It prints the hour, minute, and second (Line 50).

c. It sounds a tone (Line 60).

d. It pauses long enough for one second to pass (Lines 70 and 80).

2. When it inishes counting all the 59 seconds, it goes back to Line 20 for the
next minute (Line 100).

B. When it finishes counting all the 59 minutes, it goes back to Line 10 for the next hour
(Line 110).

[l. When it finishes counting all the hours (0-23), the program ends. (By adding another line,
120 GOTO 10, the clock runs perpetually.)

DO-IT-YOURSELF PROGRAM 5-2

Between Lines 90 and 100 you can add some tones to sound each minute. Write
a program with the added tones.

DO-IT-YOURSELF PROGRAM 5-3

Write a program that makes your computer show each of its nine colors for one second
each.

34

5 / A Loop Within A Loop

Listing Long Programs
(The LIST Command and the GHIFD@ Keys)

Your programs are now getting so long that you need a better way of listing them than simply
typing LIST (ENTER). Try these two methods:

s Specify only those lines that you want to see with the LIST command. For example,
to list only Lines 50-100, type:
LIST 50-1900¢ (ENTER)

e Type LIST (ENTER. Then, when the line that you want to see appears on the screen,
hold down (SHIFT) and press (@. This pauses the listing. You can press any key

to continue.

Learned in Chapter 5
COMMAND KEYBOARD

FOR/NEXT (SHIFD(@)
STEP

35

6 / DECISIONS, DECISIONS...

Here’s an easy decision for the computer:
* If you type ORANGE . .. then make the screen orange.
or
* If you type BUFF . .. then make the screen buff.
Easy enough? Then, have the computer do it.

Type this program:

19 PRINT DO YOU WANT THE SCREEN ORANGE OR BUFF?"
20 INPUT CS$

30 IFC$ ="ORANGE'" THEN 100

49 IF C$ ="BUFF' THEN 200

100 CLS8

110 END

200 CLSS

Run the program a few times. Try both ORANGE and BUFF as answers.

If you answer ORANGE . . . then . ..

1. Line 30 sends the computer to Line 100.

2. Line 100 turns your screen orange.

3. Line 110 ends the program. (If the computer gets to Line 110, it never makes it to Line 200.)
On the other hand . . .

If you answer BUFF ... then . ..

1. Line 40 sends the computer to Line 200.

2. Line 200 turns your screen buff.

3. Line 200 is the last line in the program, so the program ends.

6 / Decisions, Decisions ...

What happens if you answer with something besides ORANGE or BUFF? Run the program
again. This time, answer GREEN.

This makes the screen orange. Do you know why?

If the condition s false, the computer ignores the THEN part of the line and proceeds to the
next program line.

The command you used to have the computer make a decision is the IF/THEN command.
Here's the syntax for IF/THEN, but don’t expect to understand it all until you reach the end
of this chapter.

IF condition THEN commands ELSE commands Tests the condition. If it's true, BASIC
executes the commands following THEN. If it's false, BASIC executes the commands
following ELSE or, if ELSE is omitted, does nothing.

You also used the END command. Its syntax is:

END Ends program execution.

Adding Another Level
(The ELSE Option and Nested IF/THEN Commands)

Take another look at the program below:

19 PRINT "DO YOU WANT THE SCREEN ORANGE OR BUFF?"
20 INPUT C$

30 IFCS ="ORANGE'" THEN 100

40 IF C$ = "BUFF' THEN 200

100 CLS8

119 END

20@ CLSS

By using ELSE, you can rephrase the decision in this way:
If you type ORANGE . . .
... then . ..
Make the screen orange.
... orelse ...
If you type BUFF. ..
...then . ..
Make the screen buff.

You can say all of this to the computer in one line. Erase Lines 30-200, and type this as a
new Line 30:

30 IFC$ ="ORANGE'" THEN CLS8 ELSE IF C$="BUFF'" THEN
CcLSS

38

6 / Decisions, Decisions ...

Run the program, and it works exactly as it did before.

e |f C$ equals “ORANGE,"” the computer executes the command following THEN,
which is the CLS8 command.

e |f C$ does not equal “ORANGE,"” the computer executes the command following
ELSE, which is another IF/THEN command.

Note that Line 30 nests one IF/THEN command within another. You can nest as many IF/THEN
commands as you want, provided the program line does not contain more than 249 characters
(the maximum line length). You can also test if something is not equal to (<>), greater than
(>), less than (<), greater than or equal to (>=) or less than or equal to (<=) by using one
of the symbols in parenthesis instead of = in a test. For example:

30 IF A>B THEN 100

would go to 100 if A was greater than B.

. . . And Still More Levels . ..
(Additional ELSE Clauses)

Suppose that in addition to what the computer did before, you want to tell the computer what
ELSE it should do if C$ does NOT equal ORANGE,

In other words, you want to add another ELSE clause to your decision:
If you type ORANGE . . .
... then
Make the screen orange.
... orelse . . .
If you type BUFF. ..
... then ..
Make the screen buff.
... orelse . ..
PRINT "YOU MUST TYPE ORANGE OR BUFF"

To add this new ELSE clause, insert ELSE, followed by the PRINT command, at the end of
Line 30:

30 IF C$ ="ORANGE' THEN CLS8 ELSE IF C$="BUFF"
THEN CLS5 ELSE PRINT "YOU MUST TYPE QRANGE OR BUFF"

Run the program, but this time, answer the computer’s question with something besides orange
or buff. This response causes the computer to print the message ‘'YOU MUST TYPE ORANGE
OR BUFF."

You can add as many ELSE clauses as you want, as long as the entire line does not contain
more than 249 characters.

39

6 / Decisions, Decisions ...

... And Packing Even More Into a Decision
(The Colon (:))

To add even more power to the I[F/THEN command, you can have the computer carry out
any number of commands following each THEN or ELSE clause. For example, assume you
want the computer to do this:

If you type ORANGE . .

... then . ..

Make the screen orange and go to Line 10.
. or else . ..

If you type BUFF.

... then

Make the screen buff and go to Line 10.

...orelse ...

Print a message and go to Line 20.

You can say all this in one line by using colons to separate each command. Change Line
30 to the following:

30 IF C$ ="ORANGE'" THEN CLS8:G0TO 1@ ELSE IF
C$=""BUFF'" THEN CLS5:G0TO 19 ELSE PRINT "YOU MUST
TYPE EITHER ORANGE OR BUFF':G0TO 20

You can add as many commands as you want to a THEN or ELSE clause, as long as the
line does not contain more than 249 characters.

A More Subtle Decision
(The AND and OR Conditions)

By using two more words, AND and OR, you can ask the computer to make a more subtle
decision. For example, suppose you want to write a program that tests to see whether a
candidate meets these job requirements:

A degree in programming
AND
Experience in programming

Erase the memory. Then type and run this program:

10 PRINT '"DO YOU HAVE--"

20 INPUT "A DEGREE IN PROGRAMMING'; D$

390 INPUT "EXPERIENCE IN PROGRAMMING'; ES$

4® IF D$='"YES'" AND E$="YES'" THEN PRINT "YOU'RE
HIRED!'" ELSE PRINT "SORRY, WE CAN'T HIRE YOU"

5¢ GOTO 1@

40

6 / Decisions, Decisions ...

If you respond to both questions with YES, the computer reaches this decision:
YOU'RE HIRED!

If, on the other hand, you respond to the first question with YES, but respond to the second
question with NO, the compuiter is forced to reach this decision:

SORRY, WE CAN'T HIRE YOU
Now, assume the requirements change so that AND becomes OR. The job requires:

A degree in programming
OR
Experience in programming

Change Line 40 so that AND becomes OR:

49 IF D$="YES' OR E$="YES'" THEN PRINT "YOU'RE HIRED!"
ELSE PRINT "SORRY, WE CAN'T HIRE YOU"

Run the program. Respond to the first question with “YES™ and the second question with
“NO"—just as you did before—and see the difference that one word can make:

YOU'RE HIRED!

Learned in Chapter 6
COMMANDS

IF/THEN/ELSE
END
AND

OR

41

7 | THE SCREEN

So far, you've used only one screen. In this chapter, you learn to use a new screen (a big
screen) and four new commands.

If you have an RGB monitor, type PALETTE RGB before starting this chapter. This
way your colors will agree with ours.

The Big Screen
(The WIDTH Command)

The screen you're using now is a 32 X 16 text screen. It can display text (alphanumeric
characters) in a format that is 32 columns (numbered 0-31) wide by 16 rows (numbered 0-15)
deep:

43

7 / The Screen

Your computer has two other text screens that you can use. One is 40 X 24:

O] 1) 2) 3§ 4 5] 8] 7| 8] 9| 10of 1| 12 13 14 15 16] 17] 184 19¢ 20f 29| 22) 23 24 25 26} 27 28 29 30 31| 37 34 344 35 3 37] 384 79

44

7 / The Screen

To change from screen to screen, use the WIDTH command. Its syntax is:

WIDTH 40, 80, or 32 changes to the 40 x 24 screen, the 80 x 24 screen, or the
32 x 16 screen; then clears the screen.

Use WIDTH to change to the 40 x 24 screen. Type:
WIDTH 4¢ (ENTER)

The 40 x 24 screen is different from the 32 x 16 screen. The border is green, rather than
black. The cursor is a blinking underline character, rather than a blinking block. The characters
are also different in size.

Change to the 80 x 24 screen. Type:
WIDTH 80 (ENTER)

The 80 x 24 screen looks the same as the 40 x 24 screen, except the characters are thinner.
Move back to the 32 x 16 screen. Type:

WIDTH 32 (ENTER)

The 40 x 24 and 80 x 24 screens are both called high-resolution text screens. The 32 x 16
screen is called a low-resolution text screen.

Screen Positions
(The PRINT @ and LOCATE Commands)

You can position text on the low-resolution text screen with the PRINT @ command. You can
position text on the high-resolution text screen with the LOCATE command.

The syntax for PRINT @ is:

PRINT @ n, message Locates the cursor at Position n on the low-resolution text screen;
then prints message.

The syntax for LOCATE is:

LOCATE x,y Locates the cursor at Column x, Row y. The column can be 0-39 for a
40 x 24 screen or 0-79 for an 80 x 24 screen. The row can be 0-23 for either screen.

This program, which we call “Magic,” illustrates how PRINT @ works:

1@ WIDTH 32
20 PRINT @ 230, "A SCREENFUL OF MAGIC"

45

7 / The Screen

When you run this program, BASIC moves to the low-resolution text screen, locates the cursor
at Position 230 (224 +6) and prints the message ""A SCREENFUL OF MAGIC."

O 1] 2] 3] A) 5F 6 7] 8] 9] 104 1) 124 13 14 15 16] 7] 18 184 20f 21| 22 2 24 25 26{ 27) 28] 29 30y 31}

’ —

s

B4

9

128

160

192

224 A s[clr]E]EfN[FluU]L of ¢ Ml Al Gl IfC

This version of Magic illustrates how LOCATE works:

10 WIDTH 40
2¢ LOCATE 190,12
39 PRINT "A SCREENFUL OF MAGIC"

When you run this program, BASIC locates the cursor at Column 10, Row 12 and prints the
message '""A SCREENFUL OF MAGIC."

DY VP 2f 3] 3f %) 5] 7] 8] O]9 12 1Y 14 18 16 17) 18 19 20(21| 27| 7 24 2 25 27] 28 29 30 37} 37 39 36 37 38 39

46

7 / The Screen

PRINT @ and LOCATE work in a similar way, but there are two differences. First, PRINT @
locates the cursor at a PRINT @ position; LOCATE locates the cursor at a row, column position.
And second, PRINT @ prints a message; LOCATE does not print a message.

PRINT @ works only on the low-resolution text screen; LOCATE works only on a high-resolution
text screen. If you attempt to use these words on the wrong screens, you get an ?HP ERROR.

Printing in Straight Lines
The PRINT TAB Command

TAB is very handy for printing things in nice, neat columns. It's syntax is:
PRINT TAB(n)

Moves the cursor to column n on the low- and high-resolution text screens.

Try using TAB. Type:

PRINT TAB(22);"HELLO!' (ENTER)

O

The computer moves to column twenty-two and prints HELLO!. To print a nice neat column
of numbers, enter this program:

10 FORZ =500 TO 509
20 PRINT TAB(1@);2Z
30 NEXT 2

See how easy it is to print columns with TAB? Try using it in your programs now.

Lowercase Letters
(The Keys)

You can enter the upper/lowercase mode on both the low- and high-resolution screens.
However, the way that each screen displays lowercase letters 1s different.

* The low-resolution text screen displays lowercase letters in reversed colors.

* The high-resolution text screen displays lowercase letters in true lowercase.

Try using the upper/lowercase mode on both screens. Hold down SHIFT, and press (@)
Then, retype Line 30 from the Magic Program. Use (SHIFT) for the uppercase letters, as you
would on a normal typewriter. Type:

30 PRINT "A Screenful of Magic"

Type LIST (ENTER’ to list the program. On the low-resolution text screen, Line 30 looks like this:
30 PRINT "A SCREENFUL OF MAGIC'"

On the high-resolution text screen, Line 30 looks like this:

390 PRINT "A Screenful of Magic"

47

7 / The Screen

Run the program. Because of the WIDTH 40 line in Line 10 of the program, BASIC uses the
40 x 24 high-resolution text screen and displays this message on the screen:

n|21456789|rﬂ1|a’|4|sm|||n1|2122'22133132 34 35 3] 37] 39 39
0
' |
2
3
4
5
6
7
8
9
10
11
17 Al |s]efr]efefnl tfu]] fof t| |Ma|o]fe
"
14
15 ’_J
I
1%
17 | A
;]
9 J
1
20
2 N
2
” L1

Return to the uppercase-only mode by holding down (SHIFT) and pressing (8)

Colors
(The CLS Command)

You can use the CLS command on both the low- and high-resolution screens. The way that
CLS works, however, is slightly different at each screen.

¢ On the low-resolution text screen, CLS clears the screen and displays a color.

* Onthe high-resolution text screen, CLS clears the screen, displays a color, and changes
the background color.

If you have an RGB monitor, type PALETTE RGB (ENTER) before reading further. This way
your colors will agree with ours.

Now, use CLS on both screens. First, move to the low-resolution text screen and enter CLS
with color number 8 (orange). Type:

WIDTH 32 (ENTER)
CLS8 (ENTER

You see a clear orange screen with a stripe at the top. The stripe is green, the current
background color.

48

7 / The Screen

Now, move to the high-resolution text screen and enter the same command. Type:

WIDTH 49 (ENTER)
CLS8 (ENTER)

You see simply a clear orange screen (no green stripe). The CLS command changed the
background color to orange as well.

Try some other background colors. You ¢an use any number between 1 and 8.
To see how CLS works in a program, add Line 15 to our Magic Program:

10 WIDTH 49

15 CLS3

2¢ LOCATE 10,12

30 PRINT "A Screenful of Magic"

Run the program. The computer shows ‘A Screenful of Magic™ on a blue background.

Dramatic Highlights
(The ATTR Command)

You can use a special command, ATTR, to highlight text on the high-resolution text screen.
ATTR works only on the high-resolution text screen; it does not work on the low-resolution
text screen. Its syntax is:

ATTR ¢, c2, B, U Highlights text by setting the foreground to Color ¢7 (0-7) and
the background to Color ¢2 (0-7). If you specify B, the text blinks. If you specify U,
the text is underlined.

To see how ATTR works, type:
ATTR 3, 2 (ENTER)

Now, type some characters. The characters you type are highlighted. The foreground color
is buff, and the background color is blue.

Now, type:
ATTR 2, 3, B (ENTER)

The characters you type are highlighted in a different way. The foreground color is black,
the background color is red, and the characters are all blinking.

To underline your characters, type:
ATTR 2, 3, U (ENTER)

Try other combinations of foreground and background colors. You can use any number in
the range 0-7 for the foreground and background colors.

49

7 / The Screen

This program uses ATTR to highlight the message produced by the Magic Program:

10
15
20
25
30

WIDTH 40

CLS4

LOCATE 10,12

ATTR 2,3,B

PRINT "A Screenful of Magic"

When you run the program, the words ‘A Screenful of Magic' are highlighted. The foreground
is black, the background is red, and the characters are all blinking.

Color Numbers

You might have noticed that the color numbers produce different colors depending on whether
you use them with CLS, ATTR as the foreground color, or ATTR as the background color.

For example, Color 3 produces:

Blue, with CLS.
Buff, with ATTR as the foreground color.
Red, with ATTR as the background color.

The next chapter explains why this is so.

Learned in Chapter 7

COMMANDS KEYS

WIDTH (SHIFT)(@)
PRINT @

LOCATE

ATTR

CLS

50

8 / COLORS

Your color computer can produce 64 colors, but so far, you've used only nine of them. This
chapter shows how to use the many other colors that are available.

If you have an RGB monitor, be sure to type PALETTE RGB (ENTER) every time you turn
on your computer. This way your colors will agree with ours.

Specifying Colors for 40/80 Column Text
(The Palette)

The color computer has a special area in memory called a palette. The palette contains 16
slots. Each slot contains a color.

When you use a color number in a BASIC command, you are specifying a palette slot. For
example, type:

CLS3 (ENTER)

Your screen is now blue. This is because CLS3 specifies Slot 2 and Slot 2 contains the code
for blue.

As another example, type:

ATTR 3, 3 (ENTER)

Then, type some characters. The foreground is buft and the background is red. This is because
ATTR 3,3 specifies Slot 11 for the foreground and Slot 3 for the background. Slot 11 contains
the code for buff. Slot 3 contains the code for red.

Notice that the color numbers specify different slots, depending on whether you use them
with CLS, ATTR as the foreground color, or ATTR as the background color.

For example, Color 3 specifies:
e Slot 2, with CLS.
e Slot 11, with ATTR as the foreground color.
* Slot 3, with ATTR as the background color.

The following tables show which slot each color number specifies when used with CLS, ATTR
as the foreground color, and ATTR as the background color. They also show the standard
colors that are stored in each of these slots,

Table 8.1. CLS and the Palette

Color Number Palette Slot Standard Color
0 8 Black
1 0 Green
2 1 Yellow
3 2 Blue
4 3 Red
5 4 Buff
6 5 Cyan
7 6 Magenta
8 7 Orange

51

8 / Colors

Table 8.2. ATTR Foreground and the Palette

Color Number Palette Slot Standard Color

0 8 Black

1 9 Green

2 10 Black

3 11 Buff

4 12 Black

5 13 Green

6 14 Black

7 15 Orange

Table 8.3. ATTR Background and the Palette

Color Number Palette Slot Standard Color
0 0 Green
1 1 Yellow
2 2 Blue
3 3 Red
4 4 Buff
5 5 Cyan
6 6 Magenta
7 7 Orange

Using Nonstandard Colors
(The PALETTE Command)

You can change the color stored in a palette slot with the PALETTE command. The syntax
of PALETTE is.

PALETTE slot, color code Stores a color code (0-63) into a palette slot (0-15).
For example, type:
CLS3 (ENTER.

Your screen is now blue. As you learned earlier, CLS3 specifies the color stored in Slot 2 and
Slot 2 contains the code for blue.

Now, use PALETTE to store a different code in Slot 2. Type:
PALETTE 2, 2 (ENTER)

The color of your screen instantly changes to green.

Try another code. Type:
PALETTE 2, 14 ENTER

Again, the color of your screen changes.

Some codes produce different colors on a CMP monitor than they produce on an RGB monitor.
Try storing other codes in slot 2. You can use any code in the range O to 63.

52

8 / Colors

Name the Colors!
(Naming Colors for Future Reference)

Each display may produce somewhat different colors for each palette code. Type in and run
Sample Program number 23. This program will show you how each of the sixty-four colors
appears on your display, eight at a time. Find the “Color Codes” section near the back of
the book. There are sixty-four blank lines, labeled zero to sixty-three. Write a name for each
of the colors you see, next to the appropriate number. Pat yourself on the back, and try out
Sample Program number 24. You will see an exciting assortment of colors, selected at random
from the sixty-four available colors. Excited? Keep reading, and learn how you can use these
colors in your own programs.

Using Nonstandard Colors in a Program
(An Example of PALETTE)

This is the Magic program from the last chapter:

10 WIDTH 49

15 CLS&

20 LOCATE 10,12

25 ATTR3,2,B

30 PRINT "A Screenful of Magic"

Suppose you want to change the palette so that the ATTR 3,2,B command produces a sunshine
yellow foreground.

The steps are:

1.

4,

Determine which palette slot produces the foreground color (the 3" in the ATTR 3,2,B
command).

By referring to Table 8.2, you see that Slot 11 produces the foreground color.
Look up the code for sunshine yellow by referring to “'Color Codes."

Store the code (from Step 2) in the specified palette slot (from Step 1), by adding this
line to your program:

2 PALETTE 11, XX (XX represents the color code)

Run the program.

53

8 / Colors

Returning to Standard Colors
(The PALETTE CMP and PALETTE RGB Commands)

After altering the palette, you might want to return it to its standard condition. You can do
this with the PALETTE CMP and PALETTE RGB commands. Their syntaxes are:

PALETTE CMP Sets the computer to display the standard colors on a CMP monitor.
PALETTE RGB Sets the computer to display the standard colors on an RGB monitor.
If you have a CMP monitor, type:
PALETTE CMP (ENTER)
If you have an RGB monitor, you have already used the PALETTE RGB command. Type:
PALETTE RGB (ENTER)

Your palette is now back to normal. If you type € LS3 (ENTER), for example, your screen again
shows blue.

Learned in Chapter 8
COMMAND

PALETTE

54

9 / RANDOM CHANCE

Thanks to BASIC's random numbers, the computer can play almost any game of chance.

Picking a Random Number
(The RND Function)

Type this program:
18 PRINT RND(10)
Run it. The computer just picked a random number from 1 to 10. Run it some more times.

It's as if the computer is drawing a number from 1 to 10 out of a hat. The number it picks
is unpredictable.

Type and run this next program. Press (BREAK ' when you're satisfied that the numbers are
random.

19 PRINT RND(10);
29 GOTO 10

To get random numbers from 1 to 100, change Line 10 and run the program.
19 PRINT RND(100);

Unlike the other BASIC words you used, RND is a function. This means that RND returns
a value—in this case, a number. Because RND returns a number, you can use RND in the
same way that you would use a number.

These commands illustrate how you could use RND:

PRINT RND(10)+15

SOUND RND(255), RND(255)
CLSRND(8)

FOR N=1 TO RND(5) ... NEXTN

The syntax for RND 1s:

RND(n) Returns random number between 1 and n (if nis greater than 1) or between
0 and 1 (if n equals 0).

The rest of this chapter is just for fun. If you are in a hurry to learn more BASIC words, you
can skip to the next chapter.

55

9 / Random Chance

A Random Show
(An Example of RND)

Have the computer compose a song made up of random tones Type:

16 T =RND(255)
20 SOUND T, 1
30 GOTO 190

Run it. Great music, eh? Press (BREAK. when you've heard enough.

DO-IT-YOURSELF PROGRAM 9-1

Add some lines to make the computer show a random color (1-8) right before it sounds
each random tone.

Rolling the Dice
(An Example of RND)

In this game, the computer rolls two dice. To do this, it must come up with two random numbers.

Type:
19 CLS
20 X = RND(6)
39 Y = RND(6)

LD R=X+Y

50 PRINT X,

60 PRINTY

79 PRINT "YOU ROLLED A" R

80 INPUT "DO YOU WANT ANOTHER ROLL?'; AS
9% IF A% = "YES'" THEN 10

Run the program.

Line 10 clears the screen.

Line 20 picks a random number from 1 to 6 for one die.
Line 30 picks a random number for the other die.

Line 40 adds the two dice to get the total roll.

Lines 50-70 print the results of the roll.

Line 80 lets you input whether you want another roll. If you answer YES at Line 90, the program
goes to Line 10 and runs again. Otherwise, the program ends.

56

9 / Random Chance

DO-IT-YOURSELF PROGRAM 9-2

Because you know how to roll dice, it will be easy to write a Craps program. These
are the rules of the game (in its simplest form):

1. The player rolls two dice. If the first roll is a 2 (snake eyes), a 3 (cock-eyes), or
a 12 (boxcars), the player loses, and the game is over.

2. Ifthefirstrollis either a 7 or 11 (a natural), the player wins, and the game’s over.

3. Ifthefirst roll is any other number, the point goes to the player. The player must
keep rolling until either *‘making the point” by getting the same number again
to win, or rolling a 7, and losing.

You already know more than enough to write this program. Make the computer
printitin an attractive format on your screen, and keep the player informed about

what is happening. It might take you a while to finish, but give it your best. Good
luck!

Learned in Chapter 9
FUNCTION

RND

57

10 / READING

In this chapter, you teach the computer to read. You do this using three new commands,
READ, DATA, and RESTORE. You also learn a new function: INT.

Reading Data
(The DATA and READ Commands)

Ao Bb Ce Dd Ee ¥ GgHw Ti Jj Kk LI Mm Nn Oo

Type and run this program:

10 DATA APPLES, ORANGES, PEARS
20 FORX=1T03

30 READFS$

40 NEXT X

Nothing appears to happen. To see what the computer i1s doing. add this line and run the
program:

35 PRINT "F$ = ;' F$
Line 30 tells the computer to:
1. Look for a DATA line.
2. READ the first item in the list. APPLES.
3. Give APPLES an F$ label.
4

Go to the next item.

10 / Reading

The second time the computer gets to Line 30, it is told to do the same:
1. Look for a DATA line.

2 READ the first item. This time, it's ORANGES.

3. Give ORANGES the F$ label.

4. Go to the next item.

You can insert DATA lines wherever you want in the program. Run each of these programs.
They all work the same.

10 DATA APPLES 10 DATA APPLES, ORANGES
20 DATA ORANGES 20 DATA PEARS

30 FORX=1T03 36 FORX=1T03

4® READ F$ 49 READ F$

50 PRINT "F$=:"F$ 5¢ PRINT "F$=:"F$

6@ NEXT X 60 NEXT X

7¢ DATA PEARS

30 FORX=1T03 39 FORX=1T03

49 READ F$ 49 READFS

50 PRINT "F$=:"F$ 50 PRINT"F$=:"F$

60 NEXT X 60 NEXT X

70 DATA APPLES 7¢ DATA APPLES, ORANGES,
80 DATA ORANGES PEARS

90 DATA PEARS
The syntax for DATA is:

DATA data items Inserts data items in the program.
The syntax for READ is:

READ variable Reads the next data item in the program and stores it in variable.

Reading the Same Data—Over and Over
(The RESTORE Command)

Look at the original DATA program:

10 DATA APPLES, ORANGES, PEARS
20 FORX=1T03

30 READ F$

40 NEXT X

What if you want the computer to read the same list over and over? Type:
60 GOTO 10

Run the program. The computer displays 20D ERROR IN 39 (Out of Data Error in Line 30).
The first time the computer reads the data items, it crosses them out. Then, when asked to
go back to Line 30 and read the crossed-out data items, the computer displays 270D ERROR.

Type this line and run the program:

50 RESTORE

60

10 / Reading

Now, it's as if the computer never crossed out any data items. It reads the same data again
and again.

The syntax for RESTORE is:

RESTORE Moves the computer's data pointer back to the first data item.

A Vocabulary Building Test
(The INT Function)

This example program uses DATA, READ, and RESTORE to have the computer drill you on
words and definitions. Here are the words and definitions we use:

10 DATA TACITURN, HABITUALLY UNTALKATIVE
20 DATA LOQUACIOUS, VERY TALKATIVE

39 DATA VOCIFEROUS, LOUD AND VEHEMENT

40 DATA TERSE, CONCISE

50 DATA EFFUSIVE, DEMONSTRATIVE OR GUSHY

To write a program in which the computer drills you on these words and definitions, you need
to have it select words at random. Type:

60 N =RND(1Q)

7¢ FORX=1TON

80 READ AS

99 NEXT X

100 PRINT "THE RANDOM WORD IS:" AS

Run the program a few times. At this point, the program doesn't work quite right. The computer
is just as likely to stop at a definition as at a word.

What the computer really needs to do is pick a random word only from items 1, 3, 5, 7, or
9, rather than from all the items. In other words, N (the random number) needs to always
be an odd number.

Although BASIC does not have a function that converts even numbers to odd numbers, it
does have an INT function that you can use to make this conversion.

INT converts a number to its "'whole part” and deletes the decimal part. For example, INT(3.9)
equals 3. The syntax for INT is:

INT(n) Returns the "whole part’' of n. n can be any number.

61

10 / Reading

You can use N to convert even numbers to odd numbers by typing this line:
65 IF INT(N/2) =N/2 THENN=N-1
This is what Line 65 does:

e If N equals an even number, Line 65 subtracts 1 from N to make N equal to an odd
number.

For example, if N equals 10, Line 65 makes the following calculation.

INT(10/2) = 10/2
INT(5) = 5
5=5

Because the results are true (5 does equal 5), Line 65 subtracts 1 from N to make
N equal to 9.

* |f N equals an odd number, Line 65 leaves N unchanged.
For example, if N equals 9, Line 65 makes the following calculation.

INT(9/2) = 9/2
INT@4.5) = 4.5
4 =45

Because the results are false (4 does not equal 4.5), Line 65 leaves N unchanged.
Now, add these lines so that the computer will read each word’s definition:

119 READ B$
120 PRINT "THE DEFINITION IS :" B$

Add these lines so that the computer will read from the same list over and over:

130 RESTORE
140 GOTO 60

List the program. This is how it looks now:

10 DATA TACITURN, HABITUALLY UNTALKATIVE
20 DATA LOQUACIOUS, VERY TALKATIVE

30 DATA VOCIFEROUS, LOUD AND VEHEMENT

49 DATA TERSE, CONCISE

50 DATA EFFUSIVE, DEMONSTRATIVE OR GUSHY
60 N =RND(10)

65 IF INT(N/2) =N/2 THENN=N-1

706 FORX=1TON

80 READ AS

90 NEXT X

100 PRINT '""A RANDOM WORD IS :" AS

11¢ READ BS$

120 PRINT "ITS DEFINITION IS :" B$

130 RESTORE

140 GOTO 69

62

10 / Reading

DO-IT-YOURSELF PROGRAM 10-1
Want to complete this program? Add lines to have the computer:
1. Print the definition only.
2. Ask you for the word.
3. Compare the word with the correct random word.
4,

Tell you if your answer is correct. If your answer is incorrect, print the correct word

Learned in Chapter 10

COMMANDS FUNCTION
DATA INT
READ
RESTORE

63

11 / HELP WITH ARITHMETIC

Solving long math problems fast and accurately is a task your computer does with ease. This
chapter shows how to use some short cuts when typing long, difficult formulas.

Subroutines
(The GOSUB and RETURN Commands)

An easy way to handle complicated math formulas is by using the GOSUB and RETURN

commands to set up a subroutine. You always use GOSUB and RETURN together. Their
syntaxes are:

GOSUB /ine number Goes to the subroutine beginning at /ine number.

RETURN Returns from the subroutine to the command immediately following the
corresponding GOSUB command.

Type and run this program:

19 PRINT "EXECUTING THE MAIN PROGRAM"
20 GOSUB 500

30 PRINT "NOW BACK IN THE MAIN PROGRAM"
4@ END

500 PRINT "EXECUTING THE SUBROUTINE"
518 RETURN

GOSUB 500 tells the computer to go to the subroutine that starts at Line 500. RETURN telis
the computer to return to the BASIC word that immediately follows GOSUB.

65

11 / Help With Arithmetic

Labeling Subroutines
(The REM Command)

This subroutine multiplies any number by 100:

1@ INPUT "TYPE A NUMBER"; N

20 GOSUB 2000

30 PRINT N "TIMES 100 IS"R

49 GOTO 10

2000 REM FORMULA FORMULTIPLYING A NUMBER BY 100
2010 R=N* 100

2020 RETURN

Notice the REM command in line 2000. REM lets you insert a comment in a program. Its syntax
is:

REM comment Inserts any comment in a program line, without the comment having any
effect on the program.

You can insert REM lines anywhere you want in your program. They make no difference in
the way the program works. To see for yourself, add these lines and run the program:

5 REMTHIS IS A PECULIAR PROGRAM,
17 REMWILL THIS LINE CHANGE THE PROGRAM?
45 REM THE NEXT LINE KEEPS THE SUBROUTINE SEPARATED

Using More Than One Subroutine
(The ON GOSUB Command)

The ON GOSUB command makes it easy for you to include more than one subroutine in a
program. The syntax for ON GOSUB is:

ON n GOSUB line numbers Goes to the subroutine beginning at the nth line number.
To see how ON GOSUB works, type this program:

19 INPUT "TYPE1, 2, OR3"; N
20 ON N GOSUB 100, 200, 300
39 GOTO 1@

100 PRINT "YOU TYPED 1"
119 RETURN

200 PRINT "YOU TYPED 2"
210 RETURN

300 PRINT "YOU TYPED 3"
310 RETURN

Run it.
Line 20 works the same as these three commands:

18 IFN=1THEN GOSUB 10¢
20 IFN=2THEN GOSUB 200
22 I1FN=3THEN GOSUB 300

66

11 / Help With Arithmetic

ON GOSUB causes the computer to look at the line number following ON (in this case N).

¢ |f Nis 1, the computer goes to the subroutine starting at the first line number
following GOSUB.

e |f Nis 2, the computer goes to the subroutine starting at the second line number.

e If Nis 3, the computer goes to the subroutine starting at the third line number.

What if N is 47 Because Line 20 doesn't have a fourth line number, the computer simply goes
to the next line in the program.

Here 1s a program that uses ON GOSUB.

5 FORP=1T0600: NEXTP

1¢ CLS: X =RND(10®): Y =RND(100)
20 PRINT " (1) ADDITION"

3¢ PRINT "(2) SUBTRACTION"

49 PRINT "(3) MULTIPLICATION"
50 PRINT "(4) DIVISION"

6@ INPUT "WHICH EXERCISE(1-4)'";R

79 CLS

80 ONR GOSUB 1000, 2000, 3000, 4000

9¢ GOTO S5

1000 PRINT "WHAT IS" X "+" Y

101¢ INPUT A

1020 IFA=X+Y THEN PRINT "CORRECT' ELSE PRINT "WRONG"
1030 RETURN

2000 PRINT "WHAT IS" X "='"Y

2010 INPUTA

2020 IF A= X-Y THEN PRINT "CORRECT'" ELSE PRINT "WRONG"
2030 RETURN

3000 PRINT "WHAT IS" X "#*'" Y

3010 INPUT A

3020 IF A= X*xY THEN PRINT ""CORRECT" ELSE PRINT "WRONG"
3030 RETURN

4000 PRINT "WHAT IS" X "/'" Y

4010 INPUT A

4020 IF A=X/Y THEN PRINT "CORRECT" ELSE PRINT "WRONG"
4030 RETURN

Going To More Than One Place
(The ON GOTO Command)

The ON GOTO command is similar to the ON GOSUB command that you just learned about.

Its syntax is:

ON n GOTO /ine numbers calls the subroutine beginning at the nth ine number.

67

11 / Help With Arithmetic

It works the same way as ON GOSUB, except that it performs a GOTO the selected line, instead
of a GOSUB. In the following sample program, ON GOTO determines what the computer
prints when you press 1-3.

10 A$S=INKEY$:IF A$="" THEN 19

20 IFA$S <"1" ORA$>"3" THEN 10
30 B=VAL(AS®)

49 ONB GOTO 100,200,300

50 GOTO 190

100 PRINT “YOU PRESSED 1":G0TO 18
200 PRINT "YOU PRESSED 2'":GOTO 1¢
300 PRINT "YOU PRESSED 3":GOTO 10

RUN the program and see what happens.

Give the Computer a Little Help
(Parentheses)

As math formulas get more complex, your computer needs help understanding them. For
example, what if you want the computer to solve this problem:

Divide the sum of 13 + 3 by 8

You might want the computer to arrive at the answer this way:
13 +3/8 =16/8 = 2

Instead, the computer arrives at another answer. Type this command line and see:
PRINT 13 + 3 / 8 (ENTER)

The computer solves problems using these rules:

RULES ON ARITHMETIC
The computer solves arithmetic problems in this order:
1. First, it solves any exponentiation operations.
2. Second, it solves any multiplication and division operations.
3. Last, it solves addition and subtraction operations.
4

If there’s a tie (that is, more than one exponentiation, multiplication/division, or
addition/subtraction operation), it solves the operations from left to right.

The computer solves the problem above using its rules:
e First, it does the division (3/8 = .375)
e Then, it does the addition (13 + .375 = 13.375)

If you want the computer to solve the problem differently, you need to use parentheses. Type
this line:

PRINT (13 +3) / 8

68

11 / Help With Arithmetic

Whenever the computer sees an operation in parentheses, it solves that operation before solving
any others.

COMPUTER MATH EXERCISE

What do you think the computer will print as the answers to each of these problems?

PRINT 10 - (5-1) /2

PRINT10-5-1/2

PRINT (10 -5-1) /2

PRINT (10 -5) -1/2

PRINT 10 -(5-1/2)

Finished? Type each of the command lines to check your answers.
What if you want the computer to solve this problem?

Divide 10 minus the difference of 5 minus 1 by 2
You're actually asking the computer to do this:

(to-(6-1)/2

When the computer sees a problem with more than one set of parentheses, it solves the inside
parentheses and then moves to the outside parentheses. In other words, it does this:

5-1 =14
10-4 = 6
6/2 =3

RULES ON PARENTHESES

e The computer solves operations enclosed in parentheses first, before solving
any others.

* The computer solves the innermost parentheses first. It then works its way out.

COMPUTER MATH EXERCISE
Insert parentheses in the problem below so that the computer prints 28 as the answer.

PRINT30-9-8-7-6

Answer:

PRINT 30 - (9 -8) - (7 - 6)

69

11 / Help With Arithmetic

Displaying Large Numbers
(E Notation)

Type and run this program to see how the computer displays large numbers:

19 x=1

20 PRINT X;
30 X=X*190
49 GOTO 20

The computer displays large and small numbers using exponential (E) notation. The computer
displays one billion (1,000,000,000), for example, as 1E + 09, which means the number one
followed by nine zeros.

If the computer displays a number as 5E-06, you must shift the decimal point, which comes
after the 5, six places to the left, inserting zeroes as necessary. Technically, this means 5* 107,
or 5 millionths (.000005).

Notice that when you run the above program, the computer displays an 70OV ERROR (Overflow
Error) at the end of the program. The computer can't handle numbers larger than 1E + 38
or smaller than -1E + 38.

E notation is simple once you get used to it. You'll find it an easy way to keep track of very
large or very small numbers without losing the decimal point

Learned in Chapter 11

COMMANDS SYMBOLS CONCEPTS

GOSuUB () Order of operations
GOTO E Notation
ON GOSuUB
ON GOTO
RETURN
REM

70

12 / HELP WITH WORDS

BASIC has several functions for working with strings. Strings are special constants and variables
that store characters. With string functions, you can program the computer to understand yes
and no, or to tell you things in whole sentences!

Counting Characters
(The LEN Function)

Type and run this program:

1@ PRINT "TYPE A SENTENCE"

20 INPUT S$

30 PRINT "YOUR SENTENCE HAS " LEN(S$) " CHARACTERS"
49 INPUT "WANT TO TRY ANOTHER"; A$

50 IFA$ ="YES" THEN 10

Impressed? This program uses a function called LEN. The syntax of LEN 1s:
LEN(string) Returns the length of string.

In this program, LEN(S$) computes the length of string S$ (your sentence). The computer
counts each character in the sentence, including spaces and punctuation marks.

Combining Words
(The Concatenation Operator (+))

Erase the program, and run this one, which composes a poem (of sorts):

19 A$ ='"A ROSE"

20 B$ ="

30 C$="IS AROSE"

49 DS =BE+C$

50 E3$ = "AND SO FORTH AND SO ON"
60 F$ =A% +DS +D% +B% +ES$

70 PRINTFS

71

12 / Help With Words

You might encounter two problems when combining strings. Add the following line, and run
the program. It shows both problems:

80 G3I =FS +FES+FS+F$S+FS +FS +FS

When the computer gets to Line 80, it prints the first problem with this line: 70S ERROR IN
80 (Out of String Space)

On startup, the computer reserves only 200 characters of space for working with strings. Line
80 asks it to work with 343 characters. To reserve room for this many characters and more
(as many as 500), you can use the CLEAR command. Its syntax is.

CLEAR n Clears n characters of string space.
Add this line to the start of the program, and run .
5 CLEAR 500

Now when the computer gets to Line 80, it has enough string space, but prints the second
problem with this line: ?LS ERROR IN 80 (String Too Long).

A string can contain no more than 249 characters. When you want to store more than 249
characters, you need to divide the characters into smaller groups and store each group in
its own string.

Twisting Words
(The LEFT$ and RIGHT$ Functions)

Now that you can combine strings, try to take a string apart using two new functions: LEFT$
and RIGHTS. Their syntaxes are:

LEFT$(string,n) Returns the first n characters of string.
RIGHTS$(string,n) Returns the last n characters of string.
Type and run this program:

1@ INPUT "TYPE A WORD'"; W$

20 PRINT "THE FIRST LETTER IS : ' LEFTS$ (W$,1)

30 PRINT "THE LAST 2 LETTERS ARE : " RIGHTS$ (W$,2)
49 GOTO 1@

Here's how the program works:

In Line 10 you input string W$. Assume the string is MACHINE:

COMPUTER MEMORY
W$ = MACHINE

In Lines 20 and 30, the computer computes the first left letter and the last two right letters
in the string:

MACHTINE
LEFTS (W$,1) RIGHTS (W$,2)

Run the program a few more times to see how it works.

72

12 / Help With Words

Now, add this line to the program:
5 CLEAR S99

The computer will now set aside plenty of space for working with strings. Run the program
again. This time input a sentence rather than a word.

PROGRAMMING EXERCISE

How would you change Lines 20 and 30 so the computer will give you the first five
letters and the last six letters of your string?

20
30

Answers:

20 PRINT "THE FIRST FIVE LETTERS ARE :" LEFTS$ (W$,5)
30 PRINT "THE LAST SIX LETTERS ARE :" RIGHTS$ (W$,6)

Isolating Words
(The MID$ Function)

Another function that lets you isolate certain words is MID$. Its syntax 1s:

MIDS$(string.n1.n2) Returns a substring of string beginning with string’s nith
character and continuing for n2 characters.

Erase your program and type this one:

10 CLEAR 500

2® INPUT "TYPE A SENTENCE"; S$

30 PRINT "TYPE A NUMBER FROM 1 TO " LEN(S$)

49 INPUT X

5¢ PRINT "THE MIDSTRING WILL BEGIN WITH CHARACTER' X
6% PRINT "TYPE A NUMBER FROM 1 TO " LEN(S$) - X +1

70 INPUT Y

80 PRINT "THE MIDSTRING WILL BE" Y "CHARACTERS LONG"
9® PRINT "THIS MIDSTRING IS :'" MID$(SS$, X, Y)

100 GOTO 29

Run this program a few times to see if you can deduce how MID$ works.
Here's how the program works.

e In Line 20, assume you input HERE IS A STRING:

YOUR COMPUTER'S MEMORY
S$ — HERE IS A STRING

e InLine 30, the computer computes the length of S§, which is 16 characters. It then
asks you to choose a number from 1 to 16. Assume you choose 6.

73

12 / Help With Words

e |nLine 60, the computer asks you to choose another number from 1 to 11 (16-6 + 1).
Assume you choose 4.

YOUR COMPUTER'S MEMORY

X =6
Y =4

e InLine 90, the computer gives you a “‘mid-string"* of S$ that starts at the 6th character
and is four characters long:

123 4567 8910 11 12 13 14 15 16
HERE IS A S T R I N G
(—4—)
MID$(S$,6,4)

As another example of MID$, run this program:

1@ INPUT "TYPE A SENTENCE"; S$

20 INPUT "TYPE A WORD IN THE SENTENCE'; W$
30 L =LEN(WS)

49 FOR X =1TO LEN(SS$)

50 IFMID$(S$,X,L) = WS THEN 990

60 NEXT X

70 PRINT "YOUR WORD ISN'T IN THE SENTENCE"
80 END

99 PRINT W$ "--BEGINS AT CHARACTER NO." X

Here's how the program works:
e In Line 20, you input a word as W$. Assume you input the word IS.

+ In Line 30, the computer counts W$'s length: two characters.

YOUR COMPUTER'S MEMORY

S$ = HERE IS A STRING
W$ = IS
L=2

* In Lines 40-90 (the FOR/NEXT loop), the computer counts each character in S$,
starting with Character 1 and ending with Character LEN(S$), which is 16.

Each time the computer counts a new character, it looks at a new mid-string. Each
mid-string starts at character X and is L (2) characters long.

For example, when X equals 1, the computer looks at this mid-string:

H E R E IS A S TRINSG

MID$(S%$,1,2)

74

12 / Help With Words

The fourth time through the loop, when X equals 4, the computer looks at this mid-string:

4
H ERE IS A S TRING

«2—

MID$(S$,4,2)

When X equals 6, the computer finds IS, the mid-string for which it is searching.

DO-IT-YOURSELF PROGRAM 12-1
Start with a one-line program:
19 A$ = "CHANGE A SENTENCE."
Add a line that inserts this to the start of A$:
IT'S EASY TO
Add another line that prints the new sentence:

IT'S EASY TO CHANGE A SENTENCE

This is our program:

10 A$ = "CHANGE A SENTENCE."
290 B$ ="IT'S EASY TO"

30 C$E=B$+" " +AS

49 PRINTCS

75

12 / Help With Words

DO-IT-YOURSELF PROGRAM 12-2
Add to the above program to make it:
1. Find the start of this mid-string:
A SENTENCE
2. Delete the above mid-string to form this new string:
IT'S EASY TO CHANGE
3. Add these words to the end of the new string’
ANYTHING YOU WANT
4. Print the newly formed string:
IT'S EASY TO CHANGE ANYTHING YOU WANT

Hint: To form the string IT'S EASY TO CHANGE, you need to get the left portion
of the string IT'S EASY TO CHANGE A SENTENCE

Answer:

10 A$ = "CHANGE A SENTENCE."
20 B$ ="IT'S EASY TO"
3 C$=BS +'" " +AS

49 PRINT C$

590 Y = LEN ("A SENTENCE')

60 FOR X =1TO LENCCS)

70 IFMIDS (C$,X,Y) ='"ASENTENCE" THEN 990
80 NEXT X

85 END

99 D$ = LEFTS (C$,Xx - 1)

100 E$ =D$% + "ANYTHING YOU WANT"

119 PRINT ES

DO-IT-YOURSELF CHALLENGER PROGRAM
Write a program that:
* Asks you to input a sentence.

e Asks you to input (1) a phrase within the sentence to delete and (2) a phrase
to replace it.

e Prints the changed sentence.

This might take a while, but you have everything you need to write it. Qur answer's
in the back.

Learned in Chapter 12

FUNCTIONS COMMAND SYMBOL
LEN CLEAR +
LEFTS
RIGHT$
MID$

76

13 / SAVING PROGRAMS

As you know by now, each time you turn off the computer, your program disappears. To make
a permanent copy of a program, you need a cassette recorder or a disk drive.

If you plan to use a cassette recorder, read this chapter. It shows how to use CLOAD, CSAVE,
and SKIPF to save your BASIC programs onto cassette tape.

Saving BASIC Programs on Tape
(The CSAVE Command)

To save your BASIC programs on tape, use the CSAVE command. Its syntax is:
CSAVE "filename' Saves a BASIC program named filename on cassette tape.

The steps are:

ey

Connect the cassette recorder to your color computer. The introduction manual that comes
with your color computer shows how to do this.

Type a BASIC program into the computer's memory.

2

3. Insert a blank cassette tape into the recorder.

4. Press the recorder's PLAY and RECORD buttons at the same time until they lock.
5

Choose a name for your BASIC program, which we'll refer to as a filename. You can
use any filename with 8 or fewer letters. Examples of filenames are:

NAME GAMES LETTERS
6. Use CSAVE to save the program on tape.
For example, to save a program named LETTERS, type:
CSAVE "LETTERS" (ENTER)

As soon as you press (ENTER), the cassette recorder’s motor starts. When the motor
stops, BASIC displays the OK prompt on the screen. The program is still in the computer’s
memory, but it is also saved on cassette tape.

It's a good idea to make more than one copy of a program, preferably on separate cassettes,
in case one is lost or inadvertently erased.

77

13 / Saving Programs

Loading BASIC Programs from Tape
(The CLOAD Command)

To load your BASIC programs from tape, use the CLOAD command. Its syntax is:
CLOAD '‘filename" Loads a BASIC program named filename from cassette tape.
The steps are:
1. Be sure the tape is fully rewound and the connections are all in place.
2. Press the PLAY button on the recorder until it locks.
3. Erase any existing programs by typing:
NEW (ENTER)
4. Use the CLOAD command to load the program from tape.
For example, to load the program named LETTERS from tape, type:

CLOAD "LETTERS' (ENTER

As soon as you press (ENTER), the tape recorder’'s motor starts. BASIC then begins
searching for your program. While it is searching, BASIC displays the letter S on the upper

left of your screen.

When BASIC finds your program, it displays the letter F and the filename of the program
at the top of your screen and begins loading your program. When it has finished loading

your program, BASIC displays the OK prompt.

If you are certain your tape has only one program saved on it, you can type CLOAD without

a filename. The computer loads the first program it encounters.

If you try to load a program from a blank tape, the color computer searches until the tape
ends without giving any indication that the tape is blank. Press RESET to stop the loading

process.

Saving Many Programs on Tape
(The SKIPF Command)

When you save more than one program on the same tape, you need to use the SKIPF
command. SKIPF lets you position the tape at the end of your last program so that you can
be sure that you do not save your next program on top of your last program. lts syntax is:

SKIPF filename Skips through the tape until it finds the end of filename.
The steps are:
1. Rewind the tape to the beginning.
2. Press the PLAY button until it locks.

3. Enter the SKIPF command to find the end of the last program you have saved on the tape.

For example, if the last program you saved on the tape is "LETTERS", type:
SKIPF "LETTERS"

78

13 / Saving Programs

The computer notifies you when it finds the program called LETTERS. When it reaches
the end of LETTERS, the recorder’s motor stops and your screen displays the OK prompt.

Press the RECORD and PLAY buttons, and use CSAVE to save your next program.

if you can’t remember the name of your last program, use an improbable filename such as:

SKIPF "X

Hints and Tips

Here are some tips for making good recordings:

When you're not using the computer to SAVE or LOAD programs, don't leave the
recorder's RECORD or PLAY buttons down. Press STOP.

You can avoid many problems with tapes by using new, high-quality computer tapes.

If you want to reuse a prerecorded tape, first erase the contents with a bulk tape
eraser to be sure you erase everything. Even though the recording process erases
the old recording, just enough information can be left to confuse the new recording.

If you want to save a taped program permanently, break off the Erase Protect tab
on the cassette. (See your tape recorder manual.) Without the tab, you can't press
the RECORD button on your recorder. This keeps you from accidentally erasing that
tape.

Learned in Chapter 13
COMMANDS
CSAVE

CLOAD
SKIPF

79

14 / EDITING PROGRAMS

Up to now, you changed programs by retyping them. This chapter shows how to change
programs the easy way, using the EDIT, DELETE, and RENUM commands.

Editing Lines
(The EDIT Command)

————
P AR - 11
" - 11;‘:1\
| Ll X
y —-—_
e —r

To get into the edit mode, use the EDIT command. The syntax of EDIT is:

EDIT line number Enters the edit mode so you can edit line number.

In the edit mode, you can use any of the special edit keys listed in Table 14.1.

Table 14.1 Edit Keys

(n is a number. If you omit n, BASIC uses 1.)

Key Action

@ Lists the line and moves to the start.

n@characters Changes the next n characters to new characters.
@D Inserts characters.

n®@) Deletes n characters.

"Hacks’' the rest of the line and puts you in the insert mode.
Lets you extend the line.

n(8)character Searches for the nth occurrence of character.

X Kills rest of line.

n®character Kills (deletes) up to the nth occurrence of character.
n(SPACEBAR) Moves n spaces forward.

n=) Moves n spaces backward.

(SHIFT) @ Return to line mode.

81

14 / Editing Programs

Make a mistake typing a program. Type:

50 DABA EFFFUSIVE, GIMPY MUSHY
Enter the edit mode. Type:

EDIT 50 (ENTER)
You see:

50 DABA EFFFUSIVE, GIMPY MUSHY
5¢

Start by pressing (L), the List key. The (L) key displays the entire line and puts you back at
the start.

Moving the Cursor
(The Space Bar, (), and (S) Keys)

Press Space Bar a few times. This key moves you to the right. To move to the left, press
«). Note that while in the edit mode, <) merely backspaces, it doesn't delete characters.

Move to the start of Line 50 and type (5) space bar. This moves you 5 spaces to the right—
all at once. Do the same with (<. Type a number, such as (3], and (=) and move that many
spaces to the left.

Move to the start of Line 50. To move to the first E, press (8) (for “‘search”). Then type E
(the character for which you want to search). There are two ways to move to the second E:

* Type (&) E to search for the first E after the current cursor position.

* Move back to the start, and type 2 (&) E

Changing Characters
(The (C) Key)

Make your first change to Line 50. Change DABA to DATA:
1. Move to the “wrong'' character, the B in DABA.
Press (CJ for change.

Type the new character, in this case, T.

> LN

To be sure the change is made, press (L and you see:
50 DATA EFFFUSIVE, GIMPY MUSHY

Now make the next change: Change GIMPY to GUSHY. This time you'll change 3 characters
at a time:

1. Move to the first wrong character, the | in GIMPY.
2. Type 3 (€ for change three characters.
3. Type the three new characters, USH. Line 50 is now:

5¢ DATA EFFFUSIVE, GUSHY MUSHY

82

14 / Editing Programs

If this were all you needed to do to Line 50, you could press and get out of the edit
mode. As you can see, though, you have more work.

Deleting Characters
(The (D) Key)
You need to delete a character, one of the F's in EFFFUSIVE:
1. Move to the excess character, the third F in EFFFUSIVE.
2. Press (D) for delete.
3. It's done. To confirm this, press (O again:

S® DATA EFFUSIVE, GUSHY MUSHY

You can delete more than one character at a time. For example, if you type 4 (D), you delete
four characters at once.

Inserting Characters

(The (D Key)

You now need to insert some characters: GUSHY needs to be DEMONSTRATIVE OR GUSHY
1. Move to where you want to insert characters, the space before the G in GUSHY.

2. Press (I for insert mode.

3. Type your insert, DEMONSTRATIVE OR

At this point, you're still in the insert mode. For example, if you press Space Bar, you insert
a blank space; if you press (L), you insert an L. Therefore, you need to:

1. Press (SHIFTJ®) to get out of the insert mode.
2. Now, you can press (L) to list the line:

5¢ DATA EFFUSIVE, DEMONSTRATIVE OR GUSHY MUSHY

Hacking Characters
(The (H) Key)

With hack you alter a line by hacking the end of it and inserting new characters. Try hacking
at Line 50:

1. Move to the first character you want hacked off, the M In MUSHY.

2. Press (H for hack. This deletes the rest of the line and puts you in the insert mode.
3. Type your insert, in this case, CRUSTY.

4. Press (SHIFT)}) to get out of the insert mode.

5. List the line now (by pressing (L)), and you see:

5@ DATA EFFUSIVE, DEMONSTRATIVE OR GUSHY CRUSTY

83

14 / Editing Programs

Killing Characters
The K Key

Kill is almost the opposite of hack. It “kills’ everything up to the nth occurrence of a character.
Suppose that you want to kill the first half of Line 50, everything up to the comma.

1. Move to the start of Line 50 and press these keys: (K1)
2. List Line 50 now, and you see:

5¢ ,DEMONSTRATIVE OR GUSHY CRUSTY

Extending Characters
(The (X Key)
Perhaps you want to extend Line 50:

1. Press (XJ for extend. The cursor moves to the end of the line and you enter the insert
mode.

2. Type your insert: AND MUSHY
3. Press (SHIFT)™ to get out of the insert mode.
50 ,DEMONSTRATIVE OR GUSHY CRUSTY AND MUSHY

Deleting Lines
(The DEL Command)

So far, you deleted lines the simple way, like this:
50 (ENTER)

This works fine for one or two lines, but what if you want to delete 50 or 60 lines?

To delete more than one line, you can use the DEL command. The syntax for DEL is:
DEL l/ine numbers Deletes the lines specified by the line numbers.

For example, to delete Lines 30-50, type:
DEL 30-59¢ (ENTER)

84

14 / Editing Programs

Renumbering Lines
(The RENUM Command)

The RENUM command lets you change a program’s line numbers. To see how RENUM works,
type this small program:

18 PRINT "THIS IS THE FIRST LINE"
20 PRINT "THIS IS THE SECOND LINE"
390 PRINT "HERE'S ANOTHER LINE"

40 GOTO 10

Now, renumber it. Type:
RENUM 100 (ENTER)

List the program, and you see the new line numbers beginning with 100. Line 100 is what
we call the newline:

10® PRINT "THIS IS THE FIRST LINE"
11¢ PRINT “THIS IS THE SECOND LINE"
120 PRINT "HERE'S ANOTHER LINE"
130 GOTO 100

Notice that even the GOTO line number reference is renumbered.
Renumber the program again with a newline of 200. Type:
RENUM 200,120 (ENTER)

Here, the newline is 200, but the renumbering starts with Line 120. Line 120 is what we call
the startline.

100 PRINT "THIS IS THE FIRST LINE"
11® PRINT "THIS IS THE SECOND LINE"
200 PRINT "HERE'S ANOTHER LINE"
210 GOTO 100

Renumber the program one more time, giving it an increment of 50 between each line:
RENUM 300, ,50 (ENTER)

Here the newline is 300. Since you omitted the startline, BASIC renumbers the entire program.
The increment between the lines is 50:

30® PRINT "THIS IS THE FIRST LINE"
350 PRINT "THIS IS THE SECOND LINE"
4900 PRINT '"HERE'S ANOTHER LINE"
45¢ GOTO 300

Here is the syntax of the RENUM command:
RENUM newline, startline, increment Renumbers a program.
newline The first new renumbered line. If you omit newline, BASIC uses 10.

startline Where the renumbering starts. If you omit startline, BASIC renumbers
the entire program.

increment The increment between each renumbered line. It you omit increment,
BASIC uses 10.

Note: RENUM does not rearrange the order of lines.

85

14 / Editing Programs

Try some other variations of this command. Type:
RENUM ,,20
This renumbers your entire program. The newline is 10, and the increment is 20:

19 PRINT "THIS IS THE FIRST LINE"
30 PRINT "THIS IS THE SECOND LINE"
5¢ PRINT "HERE'S ANOTHER LINE"

70 GOTO 19
Type RENUM 40,30, (ENTER). Here, the newline is 40, the startline is 30; and the increment
is 10:

1@ PRINT "THIS IS THE FIRST LINE"
49 PRINT "THIS IS THE SECOND LINE"
5S¢ PRINT "HERE'S ANOTHER LINE"

66 GOTO 19

Type RENUM 5, 4@ (ENTER), and you get a ?FC Error. This is because the result would move
Line 40 ahead of Line 10.

Learned in Chapter 14
COMMANDS
EDIT

DEL
RENUM

86

15 / A POP QUIZ

We have just about reached the end of the first part of this book, soit's time for a “‘pop quiz.”
In this chapter, you'll learn how to use the INKEY$ and VAL functions to set up tests for yourself.

Watching the Keyboard
(The INKEY$ Function)

By using a word named INKEY$, you can get the computer to constantly watch, time, or test
what you're typing. Its syntax is:

INKEY$ Returns the key currently being pressed or, if no key is being pressed,
returns nothing (**).

Type and run this program:

10 A$ = INKEY$

20 IF A$ <>"" GOTO 50

30 PRINT "YOU PRESSED NOTHING"

49 GOTO 19

5¢ PRINT "THE KEY YOU PRESSED IS---"" A%

INKEY$ checks to see if you're pressing a key. It does this in a split second. At least the first
20 times it checks, you've pressed nothing (**').

Line 10 labels the key you press as A$. Then the computer makes a decision:

e If A$ equals nothing (' '), it prints YOU PRESSED NOTHING and goes back to Line 10
to check the keyboard again.

e If A$ equals something (anything but " '), the computer goes to Line 50 and prints the
key. (The <> notation means ‘'not equal to.”)

Add this line and run the program:
60 GOTO 1@

No matter how fast you are, the computer is faster! Erase Line 30 to see what keys you're
pressing.

87

15 / A Pop Quiz

Beat the Computer
(An Example of INKEYS)

Type this program:

10 X = RND(4)

20 Y = RND(4&4)

30 PRINT "WHAT IS' X "+ Y
49 T=0

5S¢ A% = INKEYS$

60 T=T+1

70 SOUND 128,1

80 IF T =15THEN 200

99 IF A$ ="' THEN 50

100 GOTO 19

200 CLS 7
219 SOUND 1890, 30
2290 PRINT "TOO LATE"

Here's how the program works:

Lines 10, 20, and 30 tell the computer to print two random numbers and ask you for
their sum.

Line 40 sets T to 0. T is a timer.
Line 50 gives you your first chance to answer the question.

Line 60 adds one to T, the timer. T now equals 1. The next time the computer gets to
line 60 it again adds one to the timer to make T equal 2. Each time the computer runs
Line 60 it adds one to T.

Line 70 beeps.

Line 80 tells the computer you have 15 chances to answer. Once T equals 15, time's
up. The computer insults you with Lines 200, 210, and 220.

Line 90 says if you haven't answered yet, the computer needs to go back and give you
another chance.

The computer gets to Line 100 only if you do answer. Line 100 sends it back for another
problem.

How can you get the computer to give you three times as much time to answer each question?

Answer:

By changing this line:

80 IF T =45 THEN 200

88

15 / A Pop Quiz

Checking Your Answers
(The VAL Function)

How can you get the computer to check to see if your answer is correct? Would this work?

100 IF A$ =X+ Y THEN 130

11@ PRINT "WRONG'", X "+'" Yy =t X + Y
120 GOTO 10

13¢ PRINT "CORRECT"

140 G6GOTO 19

If you run this program (and answer on time), you get this error message:
?7TM ERROR IN 100

That's because you can't make a string (A$) equal to a number (X + Y). Somehow, you must
change A$ to a number.

BASIC has a function for this called VAL. lts syntax is:
VAL(string) Returns the numeric value of string.
Change Line 100 by typing:
100 IF VAL(AS) =X + Y THEN 139

VAL(AS) converts A$ into its numeric value. It A$ equals the string 5", VAL(AS$) equals the
number 5. If VAL(A$) equals the string "'C," VAL(A$) equals the number 0. (“C" has no numeric
value.)

To make the program more challenging, change these lines:

10 X =RND(49) + 4

20 Y = RND(49) + 4

90 B$ =8% + AS

100 IF VAL(BS) =X + Y THEN 1390

89

15 / A Pop Quiz

Then add these lines:

45 B$ ="
95 IF LEN(BS$) <> 2 THEN 50

A Computer Typing Test
(An Example of INKEYS)

Here's a program that times how fast you type:

19 CLS

20 INPUT “PRESS <ENTER> WHEN READY TO TYPE THIS
PHRASE"; ES$

30 PRINT '"NOW IS THE TIME FOR ALL GOOD MEN"

40 T=1

50 AS$ = INKEYS

60 IF A$ ="" THEN 100

70 PRINT AS;

80 B$ =BS + AS

90 IF LEN(BS) = 32 THEN 129
100 T=T+1

110 GOTO 50

120 S =T/74
130 M=5/69
140 R =8/M
158 PRINT

160 PRINT "YOU TYPED AT--"R"--WDS/MIN"

Line 40 sets T, the timer, to 1.

Line 50 gives you your first chance to type a key (A$). If you're not fast enough, Line 60 sends
the program to Line 100 and adds one to the timer.

Line 70 prints the key you typed.

90

15 / A Pop Quiz

Line 80 forms a string named B$. Each time you type a key (A$), the program adds this to
B$. For example, if the first key you type is “N,” then:

A$ = “N”

and

B$ = B$ + A%
B$ = " + “N”
B$ = “N"

If the next key you type is *'O,"" then:

A = 0"

and

B$ = B$ + A$
B$ = “N" + 0"
B$ = “NO”

If the third key you type is "W, then:

A = "W

and

B$ = “NO" + "W"
B$ = “NOW”

When the length of B$ is 32 (the length of NOW IS THE TIME FOR ALL GOOD MEN), the

program assumes you finished typing the phrase and goes to Line 120 to compute your words
per minute.

Lines 120, 130, and 140 compute your typing speed. They divide T by 74 (to get the seconds)

and S by 60 (to get the minutes). They then divide the eight words by M to get the words
per minute.

Learned in Chapter 15
BASIC WORDS

INKEY$
VAL

91

PART 2/ HAVING FUN

Have you reached your fill of BASIC basics? In this part of the book, you take a break and
learn to:

e Compose a song.
e Draw a picture.

e Play a game with the joysticks.

93

16 / MUSIC

In this chapter, you use the PLAY command to play some of your favorite tunes.

The syntax for PLAY is:

PLAY string Plays siring. String can consist of any of the following options:

note (a letter from "“A” to "G or a number from 1 to 12).

octave (O followed by a number from 1 to 5). If you omit octave, the computer
uses Octave 2.

note-length (L followed by a numeral from 1 to 255). If you omit note-length,
the computer uses the current length.

tempo (T followed by a number from 1 to 255). If you omit tempo, the computer
uses T2.

volume (V followed by a number from 1 to 31). If you omit volume, the computer
uses V15.

pause-length (P followed by a number from 1 to 255).

substrings. Precede substrings with an X and follow them with a semicolon.
Example: XA$;

95

16 / Music

Notes
(The NOTE Option)
You can specify a musical note in two ways. The first is to enter the note's letter: A, B, C,

D, E, F, or G. To indicate a sharp, use the plus (+) or pound (#) sign. To indicate a flat, use
the minus (-) sign.

For example, A represents A natural, A# is A sharp, and A~ is A flat. Type the following
commands to hear what we mean:

PLAY "A' (ENTER)
PLAY "A;A#" (ENTER)
PLAY "A-;A;A#;A;A-" (ENIER)

The second way to specify a musical note is to use a number in the range 1-12, preceded
by the letter N. (You can omit the N, if you wish.)

96

16 / Music

For example, to hear the full 12-tone scale, run the following Scale program:

5 CLS

10 FORN=11to012
15 PRINT "NOTEH#"; N
20 PLAY STR$(N)

3¢ NEXTN

Note: STR$ converts numbers to strings. (If you are really curious, peek ahead to Chapter 37.)

Add a delay in the program so you can compare the numbers to the notes as the scale goes
up from 1 to 12 (C to B).

25 FOR I =1T0500: NEXTI

PLAY does not recognize the notation B# or C—. Substitute C for B# and B for C-.

DO-IT-YOURSELF PROGRAM 16-1

Modify the Scale program so it goes down instead of up.

Whole Notes, Half Notes, Quarter Notes...
(The NOTE LENGTH Option)

Because the Scale program does not specify note length, the computer automatically uses
quarter notes, the initial current value.

You can specify a different note length with L followed by a number in the range 1 to 255.
The number 1, for instance, denotes a whole note, 2 a half note, 4 a quarter note, 8 an eighth
note, 16 a sixteenth note, and so on.

Lnumber Note Length Note
L1 Whole note o
L2 Half note)
L3 Dotted quarter note /.
L4 Quarter note d
L8 Eighth note o
L16 1/16 note ¢
L32 1/32 note &
Le4 1/64 note po
L255 1/255 note

Vary the note lengths to produce a drum roll. Type:
PLAY "L2;A;L4;A;A;L2;A;A" (ENTER)

Notice that you needn't repeat the L option for each note. PLAY uses the current note value
until you enter another L command to tell it otherwise.

Just for fun, try playing three 1/255 notes:
PLAY "L255;A;A+;A-" (ENTER)

That's staccato!

97

16 / Music

Dotted Notes
(NOTE LENGTH’S ‘“.”’ Notation)

A dotted note tells you to increase the length of the note by one half its normal value. For
example, a dotted quarter note is equal to a 3/8 note.

You can play a dotted note by adding a period (.) or a series of periods (...) to the note length
(L). Each period increases the note length by 1/2 its normal value. For example:

PLAY "Lé4.; A" (ENTER)
This plays a 3/8 note (1/4 + 1/8 = 3/8).
Try this:
PLAY "L&4.;A;L8;C;L4.;E;L8;C;E;C;E;C;L4;A" (ENTER)

Octaves
(The OCTAVE Option)

To change octaves, use the letter O followed by a number in the range 1 to 5. If you don't
specify the octave, the computer automatically uses Octave 2, which includes middle C.

For example, try to play a simple C scale:
PLAY "CDEFGABAGFEDCBA"

What happened? G is the highest note in Octave 2, so when the computer reaches A, it starts
over at the beginning of the octave. To get into Octave 3, try this:

PLAY "CCDEFG;03;ABAO2; FEDCBA" (ENTER)

98

16 / Music

Volume
(The VOLUME Option)

To adjust the volume, use V followed by a number in the range 0 to 31. If you don’t specify
V, the computer uses V15.

For example, run this program:

5 CLS
10 PLAY "V5;A; VI10;A; VI15;A; V20;A; V25;A; V30 ;A"
20 GOTO 190

Press (BREAK) when you've heard enough.

Rests
(The PAUSE Option)

To put a pause between notes, use P followed by a number in the range 1 to 255. Pause
lengths correspond to note lengths with one important difference. You can’t use dots (periods)
with P. To compensate, just type a series of pauses. For example, to get a 3/8 pause, type P4P8.

Change Line 10 in the last program to read:

190 PLAY "V5;A; P2; V10;A; P2; VI5;A; P2; V20;A; P2;
V25;A; P2; V3D;A; P2"

Tempo
(The TEMPO Option)

You can increase or decrease the tempo with T and a number in the range 1 to 255. If you
don’t specify a tempo, your computer automatically uses T2.

Our program now looks this:

S CLS

10 PLAY "V5;A;P2; V10;A;P2; VI5;A;P2; V20;A;P2;
V25;A;P2; V30;A;P2"

20 GOTO 10

Slow down the tempo by changing Line 10 to:

10 PLAY "T1; V5;A;P2; V10;A;P2; VI5;A;P2; V20;A;P2;
V25;A;P2; V30;A;P2"

Now, speed it up by changing T1 to T15. That's more like 1it!

99

16 / Music

Substrings
(The SUBSTRING (X) OPTION)

PLAY has a substring option that lets you execute a substring and then return to the onginal
string and complete it.

The execute function takes the following form:
XAS;

Variable A$ contains a string of normal play options. X tells the computer to PLAY the string
of options stored in A$.

Rearrange the demonstration program so it executes a substring:

5 cLS

10 AS$ = "A;A¥;A-"

20 B$ = "Q05;XA%;"

39 C$="01;XA$;XBS;"
49 PLAY CS

Run the program and follow its execution.

Note: Whenever you use the substring function, a semicolon (;) must follow the
dollar sign ($). In this example, you can delete all the other semicolons.

One Further Note...
(+,—, <s>)
No, we're not going to spring a new note, like H or J, on you. We simply have one final way

you can use some of PLAY's options.

With O (octave), V (volume), T (tempo), and L (note length), you can use one of the following
suffixes instead of adding a numeral:

Suffix Purpose

+ Adds 1 to the current value.

- Subtracts 1 from the current value,
> Multiplies the current value by 2.
< Divides the current value by 2.

Use the sample program to learn about these features.

5 CLS

1@ PLAY "T2"

20 PLAY "A;A#;A-"
30 GOTO 29

Notice that Line 10 sets the tempo. Run the program once to get an ear for it. Nothing changed;
it's the same as always. Now, insert T in Line 20.

20 PLAY "T+;A;A#;A-"

Run the program. The plus sign automatically increases T by 1 each time Line 20 plays.

100

16 / Music

Now reduce the tempo, using a minus sign (-):

5 CLS

10 PLAY "T255"

20 PLAY "T-;A;AH;A-"
30 GOTO 20

Isn't multiplication faster than addition? In Line 10, reset the tempo to 2. Change T in Line
20 to T>, and let it run.

10 PLAY ""T2"
20 PLAY "T>; A;A#;A-"

You started out with T2, right? The computer multiplied that value by 2to 4, 4 x 2t0 8, 8
x 2 to 16, and so on until it reached 255.

You can slow the tempo quickly by using <" to divide the current tempo by 2.

10 PLAY "T255"
20 PLAY "T<; A;A#;A-"

Remember, you can do the same thing with L, V, and O to change the note length, the volume,
and the octave.

Roll Over, Beethoven
(An Example of the PLAY Command)

After all this hard work, you deserve a serenade. Type the following program and see if you
can name this tune.

101

16 / Music

5 CLS

100 A$ ="T5;C;E;F;L1;6;P4;L4;C;E;F;L1;G"

105 B$ ="P4;L4;C;E;F;L2;6G;E;C;E;L1;D"

110 C$ ="P8;L4;E;E;D;L2.;C;L4;C;L2;E"

115 D$ ="L&;G;G;G;LT1;F;L4;E;F"

120 E$='"12;G;E;L4;C;L8;D;D+;D;E;G;L4;A;LT1;03;C"
125 X% = "XA$;XB$;XC$;XD$;XES;"

130 PLAY X$

Do you recognize the song? Dress it up by adding these lines:

10 PRINT @ 96, STRINGS (32,"*"")

20 PRINT @ 167, "WHEN THE SAINTS"

30 PRINT @ 232, "GO MARCHING IN"

35 PRINT @ 288, STRINGS (32,"*'")

49 FORX=1T0500: NEXT X

45 CLS

5S¢ PRINT @ 128, "OH WHEN THE SAINTS"

55 PRINT @ 169, "OH WHEN THE SAINTS"

60 PRINT @192, '"OH WHEN THE SAINTS GO MARCHIN IN"
65 PRINT @ 224, "YES I WANT TO BE IN THAT NUMBER"
7@ PRINT @ 256, "WHEN THE SAINTS GO MARCHIN IN"

Run the program now and sing along with the color computer. What? You liked it so much
you want to hear it again. Okay, add these lines:

150 CLS

160 PRINT @ 130, "PLAY IT AGAIN, COCO"
165 FOR X =ATO500: NEXT X

17¢ CLS

175 PRINT @ 233, "1'D BE GLAD TO"

189 FOR I =1T0500: NEXT I

185 GOTO S5

DO-IT-YOURSELF PROGRAM 16-2

Our rendition of "Saints™ sounds fine, but it isn't true New Orleans style. Jazz it up
to suit your own musical tastes. Try changing octaves or adding a few sharps or flats.

DO-IT-YOURSELF PROGRAM 16-3

Try some musical arrangements of your own. We've included several in the Sample
Programs at the back of the book.

Learned in Chapter 16
BASIC WORDS

PLAY

102

17 / PICTURES

This chapter has you draw a picture on the low-resolution text screen. You start by setting
a tiny dot on the screen. You then set more dots, and finally, you combine these dots into
a picture.

Before you start, be aware that this chapter describes the most primitive way of drawing pictures
on the screen. Parts 3 and 4 of this book deal with the color computer’s sophisticated graphics
capabilities.

Setting A Dot
(The SET Command)

To set a dot on the screen, you use the SET command. The syntax for SET is:

SET (x,y,c) Sets a dot on the low-resolution text screen at Column x, Row y, using
Color c. x is a number in the range 0-63, y is a number in the range 0-31, and ¢
is a number in the range 0-8.

You can use SET only on the low-resolution text screen. So, move to the low-resolution text
screen by typing:

WIDTH 32 (ENTER)

Then, type and run this program:

19 CLS¢®
20 SET(0,0,3)
30 GOTO 39

See the blue dot at the top left corner? To put the dot on the bottom right corner, change
Line 20, and run the program:

20 SET(63,31,3)
Want to center the dot? Use this for Line 20:
29 SET(31,14,3)
SET tells the computer to set a dot on your 32 x 16 low-resolution text screen.

BASIC makes it easy to control the screen. SET only needs three numbers to work its magic.
Lets see how it all works.

103

17 / Pictures

The first two numbers specity the column and row position, using the following SET/RESET grid:

OV oo o]/ B[St [17 3] a]1o] 161711819 20(21[22]23]24]26]26|27 |28 |26 13031 137 {43 |34 |36 (36 |37 [3B |49 |40 |4 |42 |41 144 (45 (46 |47 [48149505152 |53 |54 {55156 {5758 50|60 |61 |62 |63

The last number specifies the color, using the palette as shown in this table:

Table 17-1
The SET Command’s Use of the Palette
Color # Palette Slot Standard Color
0 8 Black
1 0 Green
2 1 Yellow
3 2 Blue
4 3 Red
5 4 Buff
6 5 Cyan
7 6 Magenta
8 7 Orange

SET uses the palette in the same way as CLS. For example, SET(31,14,8) and CLS8 both
produce the same color, which, if you are using the standard colors, is orange.

104

17 / Pictures

Look at the grid that we showed earlier in this chapter. Notice that the darker lines group
the dots into “'blocks.” Each block contains four dots. For instance, the block in the middle
of the grid contains these four dots:

Horizontal Vertical
Position 32 14
Position 33 14
Position 32 15
Position 33 15

Each dot within a block must either be the same color or black.
Change line 30 to this:
30 SET(30,14,4)

Run the program. What happened? Line 30 asked the computer to set two different colored
dots (red and blue) within the same block. Because the computer couldn’t set them in different
colors, it set them both the second color, red.

Type and run this program:
30 SET(34,14,4)

Because the dot in Position 34, 14 is in a different block, the computer can set the two dots
in different colors.

The Computer’s Face
(An Example of SET)

In this example, we use SET to draw a picture of the computer’s face. First, be sure your
computer is set up to produce the standard colors.

e |f you have an RGB monitor, type PALETTE RGB (ENTER)

e If you have a CMP monitor and used the PALETTE command to alter the palette, type
PALETTE CMP (ENTER)

Now, type these lines to create the top and bottom of the head:

5 CLS®

10 FORH =15T0 48
20 SET(H,5,5)

30 SET(H,20,5)

40 NEXTH

105

17 / Pictures

Run the program. You see buff lines, rather than white.

Lines 10 and 40 set up a FOR/NEXT loop for H, making the horizontal positions 15 through
48 for the top and bottom lines. Line 20 sets the top line. Line 30 sets the bottom line.

To set the left and right sides of the head, type these lines:

56 FORV=5T020
60 SET(15,v,5)
70 SET(48,V,5)
80 NEXTV

To make an orange nose, type:
90 SET(32,13,8)
To make a red mouth, type:

160 FORH=28T036
110 SET(H,16,4)
12¢ NEXTH

To make blue eyes, type:

130 SET(25,190,3)
1490 SET(38,190,3)
150 GOTO 150

Run the program.

106

17 / Pictures

A Blinking Computer
(The RESET Command)

By using another command called RESET, you can make the computer blink. The syntax
of RESET is:

RESET x,y Resets a dot on the low-resolution text screen at Column x, Row y. x
is a number in the range 0-63. y is a number in the range 0-31.

Type:
150 RESET(38,10)

Run the program. You now see the same face, except the right eye is missing. RESET erases
the dot in Position 38,10. That's the right eye.

To make the eye blink, set and reset the eye by adding this line:

160 GOTO 140

Reading the Dots
(The POINT Function)

Now that you have learned how to SET and RESET points, let's learn how to read them, too.
The POINT function lets you read each graphic character on the screen, and tell whether
it is SET, RESET, or if there is a text character in that position. The syntax for POINT is:

POINT (x,y)
Restores information on point x,y from the low-resolution text screen.
—1 Point is part of a text character.
0 Point is RESET.
Code Point is SET (Code is color code).

Let's use POINT in a program. First, we'll clear the screen, then draw a horizontal line on
it. Then we'll use POINT to read each position on the screen and reverse them. Type in:

10 CLS @

20 FORZ=0TO 63

39 SET (Z,16,2)

49 NEXT 2

100 FORX =90 TO 63

110 FORY =9 T0 31

120 A =POINT(X,Y)

130 IF A=-1THEN 200

140 IFA =0 THEN SET (X,Y,2):G0TO 200
150 IF A =2 THEN RESET (X,Y)
200 NEXTY,X

210 FORT=1TO0 500

220 NEXT T

107

17 / Pictures

Run the program and watch POINT at work.

Learned in Chapter 17

COMMANDS FUNCTIONS
SET POINT
RESET

108

18 / THE TALKING COMPUTER
TEACHER

Who says the computer can't talk? It's voice, though, will sound similar to your own. You can
make the computer talk by using your own tape recorded voice. Your programs will be a
lot more interesting and fun when they talk back to you. Let’s get started.

Mo Bb Cc Dd Ee FF Gg Hh T Jj Kk LI Mm Nn Qo PpQq

Unplug the three pronged cable connecting your tape recorder to the computer. Plug a
microphone into the tape recorder if it doesn’t have one built in. Put a blank tape into the
tape recorder. Press the PLAY and RECORD buttons on the recorder and start talking. Say
whatever you want. Press the STOP button on the recorder, and REWIND the tape. Type
in this program:

5 CLS

19 INPUT "PRESS <ENTER> TO HEAR THE RECORDING";AS$
20 MOTOR ON

39 AUDIO ON

Unplug the microphone from the tape recorder. Plug the three-pronged cable from the
computer into the tape recorder. Press the PLAY button on the tape recorder. Turn up the
volume on your display or amplifier. RUN the program. You will hear your own voice.

MOTOR ON Turns on the tape recorder
AUDIO ON Connects the tape recorder sound to the display speaker or amplifier.

There is a way to program the tape recorder to turn off, but for now press the computer RESET
button. The RESET button is on the back right side of the computer, when you are facing
it. LIST your program. RESET did not erase it. Add these program lines:

35 CLS

4® A$ = INKEYS

5S¢ PRINT @ 225, "PRESS <X> TO TURN OFF RECORDER"
6@ IF A% <> "X'" THEN 40

79 AUDIO OFF

80 MOTOR OFF

109

18 / The Talking Computer Teacher

Prepare your tape for playing and RUN the program.
Line 40 tells the computer to read the keyboard without pausing like INPUT.

Line 60 looks at what line 40 reads, and decides whether or not you pressed the X key. If
you did not press the X key, the computer goes back to line 40 and looks again. If you did
press the X key, the computer goes on to line 70.

Line 70 turns off the tape recorder sound.

Line 80 turns the tape recorder off.

Now that you understand how it works, you are ready to record the computer teacher. Here
is the script:

“Hi, I'm your talking computer teacher. The first lesson is math. | will give you a series
of addition problems. Press the ‘W' key..."

(Pause for a few seconds)
"You will hear that every time that you give me an incorrect answer. Press the ‘R’ key..."”
(Pause for a few seconds)

I will make that sound every time you answer correctly. You will not hear my voice again
until you give me three correct answers. Good luck. Press the ‘G’ key to begin.”

(Pause for a few seconds)

""Hello again. | hope that you enjoyed your lesson. Press the 'E’ key to turn off the tape
recorder.”

110

18 / The Talking Computer Teacher

Finished? The next thing to do is to draw the talking teacher. Here is our grid of what it will
look like:

- m i) &“-ﬂg
P : o
181011 i)
‘ e -t
R T T T T C T T
1 T | I
11 1111 ‘I !
11 1L
H i) . 11 10 4
N 1T, ¢ 48 {1
1 1l 1UIL
N T j ¢ 11
= 4 e $#
T
F 1171

Draw the mouth first. Erase memory and type:

5 CLS O
200 FORH=26T035
219 FORV =16T0 21

220 SET(H,V,4&)
230 NEXT V,H

That's a closed mouth. To make 1t talk, type:

509 RESET(30,18):RESET(39,19
519 GOTO 2¢0

RUN the program. Now draw the face. Type:
1090 FORH=16T0 47
1186 FORV =4T0 23
120 SET(H,V,5)
130 NEXT V,H

Draw the body. Type:

140 FORH=0TO 60 STEP 4

15¢ FORV =24 T0O 31

160 SET(H,V,2):SETCH+1,v,2)
179 SET(H+2,V,7):SET(H+3,Vv,7)
180 NEXT V,H

Draw the eyes. Type:

300 FORV =10 TO 11

310 SET(24,V,3):SET(25,V,3)
320 SET(36,V,3):SET(37,V,3)
339 NEXT V

3490 PRINT @ @,"THE TALKING COMPUTER TEACHER"
RUN the program. Make the eyes blink. Type:

505 IF RND(4) =4 THEN SET(24,10,5):8ET(37,10,5)

11

18 / The Talking Computer Teacher

RUN the program. That is what the talking teacher looks like. Now, teach the teacher to talk.
Type:

400 MOTOR ON

410 AUDIO ON

420 AS$ = INKEYS

439 IF A$ ="G'" THEN MOTOR OFF:END

44¢ IF A% ="W' THEN MOTOR OFF;:GOSUB 2000
450 IF A% ='"R" THEN MOTOR OFF:GOSUB 3000
2000 FORT=1767T0 86 STEP -10

2019 SOUND T,1

2020 NEXTT

2030 RETURN

3000 FORT=86T0O176 STEP 19

3010 SOUNDT,1

3020 NEXTT

3030 RETURN

Rewind the tape in your tape recorder. Connect the three-pronged cable from the tape recorder
to the computer. Press the PLAY button on the tape recorder. RUN the program. Do what
the talking teacher tells you to do.

Is everything working so far? When you press the W key, you should hear ascending tones.
Pressing the R key makes descending tones. If you press the G key, the program ends. Now,
program the computer to give you arithmetic problems. Type:

430 IF A%$ ="G'" THEN MOTOR OFF:GOSUB 1009
%60 IF A$ = "E" THEN MOTOR OFF:END

1000 X =RND(100):Y = RND(100)

1010 PRINT @ @,"WHAT IS" X "+" Y

Notice line 1015. It sets the PRINT position
for what you type in line 1020.

1915 PRINT @ 20,

1020 INPUT A

1030 IFA=X+Y THEN GOSUB 3000:C =C + 1

1040 IFA> X+ Y THEN GOSUB 2000:PRINT 3 @,"WRONG -
THE ANSWER IS" X + Y

18650 IF C =3 THEN RETURN

1669 FORP =1TOS500:NEXT P

1070 GOTO 1000

112

18 / The Talking Computer Teacher

Rewind the tape and press PLAY, then RUN the program. Watch, listen, and learn with the

talking computer teacher.

Learned in Chapter 18
COMMANDS

AUDIO
MOTOR

113

19 / JOYSTICKS

If you have joysticks, connect them now by plugging them into the back of your computer.
They fit in only the correct slots, so don't worry about plugging them into the wrong places.

This chapter shows how to use joysticks in a BASIC program. If you do not have joysticks,
skip this chapter.

The Floating Switches
(The JOYSTK Function)

You use the JOYSTK function to find the position of the joysticks' floating switches. The syntax
of JOYSTK is:

JOYSTK(n) Returns the position of n, a floating switch on one of the joysticks.
nis anumber from 0 to 3

n=0 Right joystick's horizontal coordinate.

n=1 Right joystick's vertical coordinate.

n=2 Left joystick's horizontal coordinate.

n=3 Left joystick's vertical coordinate.

To see how JOYSTK works, run this short program'

10 WIDTH 32
290 PRINT @ @, JOYSTK(®);
306 PRINT @ 5, JOYSTK(1);
40 PRINT @ 10, JOYSTK(2);
50 PRINT @ 15, JOYSTK(3);
60 GOTO 20

19 / Joysticks

See the four numbers on your screen? They're the horizontal and vertical positions of the two
joysticks' floating switches.

Grasp the right joystick's floating switch. (The right joystick 1s the joystick that is connected
to the RIGHT JOYSTICK socket on the back of the computer.) Keeping it in the center, move
it from left to right. The first number on the screen changes from 0 to 63, going through all
the numbers in between.

Move the left joystick's floating switch from left to right. The third number on the screen changes.

Now, move the floating switches up and down, keeping them in the center. Moving the right
joystick up and down changes the second number from 0 to 63. Moving the left joystick up
and down changes the fourth number from 0 to 63.

This is how the computer reads the joysticks' positions:
JOYSTK(0) and JOYSTK(1) read the right joystick’s positions:

* JOYSTK(0) reads the horizontal (left to right) coordinate.

e JOYSTK(1) reads the vertical (up and down) coordinate.
JOYSTK(2) and JOYSTK(3) read the left joystick’s positions:

e JOYSTK(2) reads the horizontal coordinate.

* JOYSTK(3) reads the vertical coordinate.

Whenever you read any of the joysticks, you must read JOYSTK(0). To find out for yourself,
delete Line 50 and run the program. It works almost the same, except it doesn't read JOYSTK(3),
the vertical position of your left joystick.

Delete Line 20 and change Line 60:
60 GOTO 39

Run the program. Move all the switches around. This time the program doesn’t work at all.
The computer won't read any coordinates unless you first have it read JOYSTK(0). Type these
lines and run the program:

20 A =JOYSTK(®)
60 GOTO 20

Although the computer is not printing JOYSTK(0)'s coordinates, it's still reading them. Therefore,
it can read the other joystick coordinates. Whenever you want to read JOYSTK(1), JOYSTK(2),
or JOYSTK(3), you first need to read JOYSTK(0).

Painting with Joysticks
(An Example of JOYSTK)

Type and run this program:

10 CLS(®)

20 H=JOYSTK(®)

30 V=JOYSTK(1)

4 IFV>31THENV =YV -32
80 SET(H,V,3)

9¢ GOTO 20

116

19 / Joysticks

Use the revolving switch of your right joystick to paint a picture. (Move the switch slowly so
that the computer has time to read its coordinates.)

Line 20 reads H, the horizontal position of your right joystick. This can be a number in the
range O to 63.

Line 30 reads V, its vertical position. This also can be a number in the range 0 to 63. Since
the highest vertical position on your screen is 31, Line 40 is necessary: It makes V always
equal a number in the range 0 to 31.

Line 80 sets a blue dot at H and V.
Line 90 goes back to get the next horizontal and vertical positions of your joysticks.

This program uses only the right joystick. Perhaps you could use the left one for color. Add
these lines and run the program:

5¢ C=J0YSTK(2)

60 IFC<31THENC =3
79 IFC>=31THENC =4
89 SET(H,V,C)

Move your left joystick to the right, and the computer makes C equal to 4. The dots it sets
are red. Move it to the left, and the computer makes C equal to 3. The dots it sets are blue.

The Joystick Buttons
(The BUTTON Function)

Want to use your joystick buttons? Add these lines to the program:

9® IF BUTTON(®)=1 THEN 10
1006 GOTO 20

Run the program and start "'painting."’ Press the nght button when you want to clear the screen
and start again. (If you have a joystick with two buttons, press the button on the right side
of the joystick.)

The syntax for the BUTTON function is:

BUTTON (n) Returns a 1 if Button nis on, and a 0 if button n is off. nis a number
from 0-3:

fl

Right Button 1 (or single-button joystick)
Right Button 2

Left Button 1 (or single-button joystick)
Left Button 2

33332
il
W =+ O

17

19 / Joysticks

Learned in Chapter 19
FUNCTIONS

JOYSTK
BUTTON

118

PART 3 / DRAMATIC IMAGES

Are you ready for a dramatic teap? In this part of the book you learn to use a new screen
designed solely for graphics, the low-resolution graphics screen.

Using the low-resolution graphics screen, you'll find it easy to:
Draw a circle
Paint a box
Move a picture

And much more!

119

20 / LET’S GET TO THE POINT

One of the most exciting features of the color computer is its ability to display precise, varied,
and easy-to-use graphics.

Just how easy is it to display these graphics? Well, let's start with the most basic element.
a point or a dot, and build from there.

But First, A Word About Color . ..
(Using Palette to Set up Standard Colors)

We do a lot of talking about colors in this part of the book, and it would help if your colors
agree with ours. So, to avoid confusion, take a minute to be sure your computer’s palette
is set to produce the standard colors.

* |If you are using an RGB monitor, type PALETTE RGB (ENTER]

e |f you are using a CMP monitor and have altered the palette, type PALETTE CMP
(ENTER)

Now, proceed with your first dot.

Your First Dot (or Point)
(The PSET Command)

Your computer makes it simple to put a dot on the screen. Type the following program and see:

2 WIDTH 32

5 PMODE 1,1

10 PCLS

20 SCREEN 1,1

3¢ PSET (1¢,20,8)
49 GOTO 49

121

20 / Let's Get to the Point

But What About the Color?
(Specifying Colors with PSET)

By now, you probably figured out that you can change colors by changing ¢ to a different
number in the range 0-8.
Within limits, this is true. However—and it's a big however—you can produce only four colors.

There's a good reason for this, which we cover in Chapters 21 and 22 when we discuss
PMODES and color sets. For now, don't worry if you can't always get the color you want.

In your current PMODE and color set, you can get these colors:

Color Palette Standard
Number Slot Color
Color 1 or 5 Slot 4 Buff
Color 2 or 6 Slot 5 Cyan
Color 3 or 7 Slot 6 Magenta
Color 0, 4, 8 Slot 7 Orange

For example, in your current PMODE and color set, Color 1 and Color 5 both specify the
color stored in Slot 4. If your palette is set up to produce the standard colors, this color is buff.

If you want, try changing the dots' color to cyan (2 or 6), and magenta (3 or 7). Then, change
the color back to orange (0, 4, or 8) before proceeding.

Now You See It...Now You Don’t
(The PRESET Command)

Any guesses how to turn off a dot? Here’s a hint: It's easy, and it has to do with color.

You don't really turn off the dot; you simply change its color so it blends into the background.
You do this with a new command, PRESET (point reset). PRESET “'knows'' you want to use
the background color, so you don't need to give the color.

PRESET (x,y) resets a point on the current low-resolution graphics screen to the
current background color,

x is the horizontal position (O to 255).
y is the vertical position (O to 191).

123

20 / Let's Get to the Point

Do you remember the RND (random) function from Part 27 If not, review it; then write
a short program that fills the screen with random dots of random colors.

DO-IT-YOURSELF PROGRAM 20-1

Finding a Point
(The PPOINT Function)

PPOINT is closely related to PSET and RESET. It lets you find the color of any dot on the screen.

PPOINT (xy) tells what color a point is on the current graphics screen

x is the point’'s horizontal position (0 to 255).
y is the point’s vertical position (0 to 191).

This example shows how PPOINT can be handy to include in a program:

2

5

10
15
3¢
35
4o
50
60
70

105
110

The computer fills a 10 x 10 square (in the upper left corner of the screen) with random colored
dots. When the dot in Position (5,5) is Color 8, the computer displays the message POSITION

WIDTH 32
PMODE 3,1
PCLS
SCREEN 1,1
X = RNDC(10)
Y = RNDC(10)
C = RND(8)

(LI L 1}

PSET (X,Y,C)
IF PPOINT (5,5)=8 THEN GOTO 105

GOTO 30
CLS

PRINT @ 109, "POSITION (5,5) IS NOW COLOR 8"

(5,5) IS NOW COLOR 8.

Learned in Chapter 20

COMMANDS FUNCTION
PSET PPOINT
PRESET

124

21 / HOLD THAT LINE!

So, now you can put a dot on the screen—even several dots. But what kind of starting point
is that, you might wonder, when you’re eager to create some ‘‘real’” graphics.

To answer that question, think of some of your very first drawings on paper. Remember the
drawings you made by connecting a bunch of dots? That is exactly how your computer draws.
You tell it which dots to connect, and it draws a line.

Drawing a Line
(The LINE Command)

One way to tell the computer to draw a line between dots is to use the LINE command. To
see LINE at work, modify the program that set the dots. (For the sake of convenience, call
the program Lines.)

First change Line 30 as follows:

30 LINE (®,0) - (255,191),PSET
Then, delete Line 35 by typing:

35 (ENTER)
Your program now reads:

2 WIDTH 32

5 PMODE 1,1

19 PCLS

20 SCREEN 1,1

30 LINE (0,0)-(255,191),PSET
40 GOTO 49

Now, run the program. The screen shows a line that runs from the upper left to the lower
right corner.

How about changing the direction of the line so that it runs from the lower left to the upper
right corner?

125

21 / Hold That Line!

You probably already figured out this one, but—just in case—here’s the new Line 30:

30 LINE (0,191)-(255,0),PSET

Drawing Two Lines
(An Example of LINE)

What about intersecting lines?

Insert the original Line 30 that drew the first line. (First, renumber it as Line 25.) Then run the
program. Does your screen display two lines intersecting in the center?

In fact, you can put as many lines on the screen as you want, once you learn the syntax.
Here it is:

LINE (x1,y7)-(x2,y2),a,b draws a line or a box on the current graphics screen.

(x1,y1) is the line's start point.

(x2,y2) is the line’s end point.

a is either PSET (set) or PRESET (reset).

b is either B (box) or BF (box filled). This is optional.

Note: You can omit the start point as discussed below.

At times, you might want to start a second line where the first line ends. To do so, omit the
start point. For example:

30 LINE (0,0)-(255,191),PSET
35 LINE -(191,0),PSET

Line 20 draws a line from (0,0) to (255,191). Line 30 then draws another line, this one from
(255,191) to point (191,0).

Erasing a Line
(The PSET and PRESET Options)

Maybe you noticed that LINE does not have a color option. Instead, it includes PSET and
PRESET options that let you specify whether you want to use the foreground or background
color.

Take another look at the program lines that created the intersecting lines:

30 LINE (9,0)-(255,191) ,PSET
35 LINE (9,191)-(255,0),PSET

From your experience turning on and off dots in Chapter 20, can you guess what would happen
if you change PSET to PRESET? Try it and see. Type:

30 LINE (0,0)-(255,191),PRESET

126

21 / Hold That Line!

If you guessed that the line that ran from the upper left to the lower right would disappear,
you were right.

e PSET sets the line using the foreground color.
¢ PRESET resets the line to the background color.
Before proceeding, change the PRESET parameter in line 30 back to PSET.

Boxing a Line
(The B Option)

We've almost made it through LINE, but a few items still need to be (to B?) covered.

B stands for box. With low-resolution graphics, you can make a box without writing a separate
program line for each side. All you have to do is specify two opposing corners of the box,
and add ,B to the statement. Then when you run the program, your computer creates a box
instead of a line.

To illustrate, call your Lines program back into service.

2 WIDTH 32

5 PMODE 1,1

10 PCLS

20 SCREEN 1,1

25 LINE (0,0)-(255,191),PSET
30 LINE (0,191)-(255,0),PSET
40 GOTO 40

As is, the program creates two lines that intersect in the center of the screen. Delete Line
30 and add the suffix ,B to Line 25.

25 LINE (9,0)-(255,191),PSET,B

Now see what happens when you run the program. Did you box yourself in?

DO-IT-YOURSELF PROGRAM 21-1

Write a program that creates a box with a pair of lines intersecting in the center. We
tell you why these are the only available colors when we discuss PMODE and SCREEN
in the next chapters.

Fill A Box
(The BF Option)

We're almost at the end of the LINE, so let’s try to finish.

If you refer to the format of LINE, you can see you have the option of adding F to the optional
suffix ,B.

F lets you fill the box with the foreground color. Try it. Change Line 25 as foliows:
25 LINE (0,0)-(255,191),PSET,BF

How about that! You see a big box filled with color.

127

21 / Hold That Line!

DO-IT-YOURSELF PROGRAM 21-2

Ready to try your own Lines program? Can you build a house? Start with Lines 5,
10, and 20 of the Lines program and take it from there. Be sure to add:

e A front door, of course.
e At least one-window.
e A chimney.

The overall design is up to you (Cape Cod, Ranch, or whatever), but we've included
a sample house (good view, no pets) program in the back of the book. Don't worry
about doorknobs; we add those later.

Be sure to save this program on cassette, since you will need it later.

DO-IT-YOURSELF PROGRAM 21-3
This is a real challenge.

As you know, a straight line is the shortest distance between two points. Well, put
a few extra miles between our two points. Use LINE to draw a crooked line.

To get started, use Lines 5, 10, and 20 from the Lines program.

Learned in Chapter 21
COMMAND

LINE

128

22 / THE SILVER SCREEN

Are you ready to find out about another command? If so, turn down the lights, because we're
about to raise the curtain on the silver screen.

-
crvnnG ATRK
wary oW
Taron BALIL

- -

— -

Displaying the Graphics Screen
(The SCREEN Command)

Take a look at the Lines program for a second. Concentrate on the SCREEN statement in
Line 20:

2 WIDTH 32

5 PMODE 1,1

10 PCLS

20 SCREEN 1,1

25 LINE (0,0)-(255,191) ,PSET
30 LINE (0,191)-(255,0),PSET
49 GOTO 40

SCREEN tells the computer to display a screen. What kind of screen it displays depends on
the instructions you give it:

e First, you tell the computer whether to display a text.or a graphics screen.
e Second, you tell the computer what color set to use.
SCREEN type, color set displays the current graphics or text screen

type is O (text screen) or 1 (graphics screen)
color setis 0 or 1

Note: If type or color set is any positive number greater than 1, your computer uses 1.

129

22 / The Silver Screen

In the Lines program, change Line 20 to:
20 SCREENO,®
Then, run the program. Does your computer "‘hang up’? (Press to regain control.)

Actually, the computer ran Lines, the same as before. This time, it did not show you the graphics
screen. You asked to see the text screen instead.

Now change Line 20 to:
20 SCREEN1,9
Notice that you have the graphics screen again, but this time, the color set is changed.

At first glance, it appears that you have only two color choices, 0 and 1. Actually, you're
choosing from a much greater variety. You're switching color sets, not individual colors.

Tables 22.1-22.2 shows the two color sets and how the computer uses the palette in each

color set.

Table 22.1

Color Set 0
Color Palette Standard
Number Slot Color
Color 1 or 5 Slot 0* Green
Color 2 or 6 Slot 1 Yellow
Color3or7 Slot 2 Red
Color 0, 4, 8 Slot 3** Blue

* Default background color.

** Default foreground color.

Table 22.2

Color Set 1
Number Slot Color
Color 1 or 5 Slot 4* Buff
Color 2 or 6 Slot 5 Cyan
Color 3 or 7 Slot 6 Magenta
Color 0, 4, 8 Slot 7+~ Orange

* Default background color.
** Default foreground color.

For example, in Color Set 0, the computer uses the color stored in Slot 1 as the default
background color. Assuming your computer’'s palette is set to produce the standard colors,
Color Set 0 produces a green background.

DO-IT-YOURSELF PROGRAM 22-1

Write a program that switches from the text screen to the graphics screen. You might
want to put a loop in the program so that it changes the color set after it loops through
the program. This way, you can see all the SCREEN features at work.

130

22 / The Silver Screen

Changing the Foreground and Background Colors
(The COLOR Command)

Notice that we use the word default to describe the foreground and background colors. The
COLOR command lets you change these defaults.

The syntax for COLOR is:

COLOR c7,c2 sets the foreground and background colors on the current graphics
screen

c1 is the foreground color (O to 8).
c2 is the background color (0 to 8).

For example, insert Line 6 into the Lines program:

6 COLORG, 7
Run the program. The foreground color is Color 6. The background color is Color 7.
Do you want to reverse the colors? Change Line 6 to:

6 COLOR7, 6

Before proceeding, delete Line 6 from your program.

Start With the Right Text Screen
(The WIDTH Command)

Now, look at another command in Lines:
2 WIDTH 32

This line is purely a precaution. We want to be sure that when you run Lines, you are not
at one of the high-resolution text screens (the 40 x 24 or 80 x 24 screen).

Why is this important? BASIC is unable to produce low-resolution graphics on a high-resolution
text screen.

To see for yourself, delete Line 2, move to a high-resolution text screen, and run the program.

DEL 2
WIDTH 49 (ENTER)
RUN (ENTER)

Your computer appears to hang up. It ran Lines, but it was unable to execute the SCREEN
command from the high-resolution text screen.

Move back to the low-resolution text screen, and run the program.

2 WIDTH 32 (ENTER)

131

22 / The Silver Screen

Clearing the Graphics Screen
(The PCLS Command)

The Lines program looks like this:

2

5

10
20
25
30
40

WIDTH 32

PMODE 1,1

PCLS

SCREEN 1,1

LINE (9,0)-(255,191) ,PSET
LINE (0,191)-(255,0),PSET
GOTO 40

Look at Line 10. It contains the PCLS command. This command simply clears the graphics
screen. (It serves the same function for the graphics screen as CLS does for the text screen.)

Here is the syntax for PCLS:

PCLS color clears the current graphics screen

color is 0-8. If you omit the color, the computer clears the screen to the current
background color.

The Lines program doesn't make use of PCLS’s color option, so the computer uses the current
background color. Retype Line 10, and run the program.

190

PCLS 6

The background is now Color 6.

Learned in Chapter 22

COMMANDS

SCREEN
WIDTH
COLOR

PCLS

132

23 / MINDING YOUR PMODES

Whenever you write a low-resolution graphics program, you need to consider these three
features:

e Screen positions—You can use as many as 256 x 192 positions at a time.
e Colors—You can use as many as four colors at a time.
e Screens—You can use as many as eight screens at a time.

The more you use of one feature (such as screen positions), the less you can use of the other
two features (colors and screens).

PMODE, the unknown command in the Lines program, sets the features you want to use.

You can choose from among five PMODE settings, shown in Table 23.1.

Table 23.1 / PMODE Settings

Positions Colors Screens
PMODE 4 256 x 192 2 2
PMODE 3 128 x 192 4 2
PMODE 2 128 x 192 2 4
PMODE 1 128 x 96 4 4
PMODE 0 128 x 96 2 8

133

23 / Minding Your PMODES

Lines in PMODE 4
(Changing PMODE Settings)

Bring back Lines and see what it looks like in a different PMODE. In case you've forgotten
Lines, here it is:

2 WIDTH 32

5 PMODE 1,1
190 PCLS

20 SCREEN1,1

Now change from PMODE 1 to PMODE 4.
5 PMODE 4,1
Run the program. You can see two feature changes right away:

e The lines are much finer because you shifted from a 128 x 192-position PMODE
to a 256 x 192-position PMODE.

* The color changes because you shifted from a 4-color PMODE to a 2-color PMODE.

Changing Available Positions
(PMODE Positions)

Notice that when you shift to a different PMODE, you do not have to change the positions
of any of your dots. BASIC lets you use the same screen grid (a 256 x 192 grid), no matter
how many screen positions you actually have available.

For example, (128,96) is always the center of the screen, no matter which PMODE you're
using, and (256,192) is always the bottom-right corner of the screen. The way that BASIC
uses the screen grid, depends on which PMODE you are using.

* Ina 128 x 96-position PMODE, BASIC sets four dots for each dot you specify. For example,
if you ask BASIC to set Dot (0,0), it also sets (1,0), (1,1), and (0,1).

¢ Ina 128 x 192-position PMODE, BASIC sets two dots for each dot you specify. For
example, if you ask BASIC to set Dot (0,0), it also sets (1,0).

* Ina 256 x 192-position PMODE, BASIC sets one dot for each dot you specify.

134

23 / Minding Your PMODES

Therefore, a diagonal line in a 128 x 96-position PMODE looks more like a stairstep on the
screen than one drawn in a 256 x 192 position PMODE.

T 17 T
.] B
n TR
L A J_ﬁ
; []
L [111
128 x 96-Position PMODE 256 x 192-Position PMODE

The number of different screen positions you can use in a 128 x 96-position PMODE is only
one-fourth what you can use in a 256 x 192-position PMODE.

Screen Positions Size of

Available Each Dot
High resolution 256 x 192 D
Medium resolution 128 x 192 H

Low resolution 128 x 96 H}

The “'Graphics Screen Worksheets,” in the “Odds and Ends” section show the positions
available in each PMODE.

Changing Color Modes
(PMODE Colors)

The 2-color mode, like the 4-color mode, has two color sets that you can use. Tables 23.2
and 23.3 show the two color sets you can use in a 2-color PMODE.

Table 23.2

Color Set 0
Color Palette Standard
Number Slot Color
Color 2, 4, 6, 8 Slot 8* Black
Color 1, 3,5, 7 Slot 9** Green

* Default background color.
** Default foreground color.

135

23 / Minding Your PMODES

Table 22.3

Color Set 1
Color Palette Standard
Number Slot Color
Color 2, 4, 6, 8 Slot 10* Black
Color 1, 3,5, 7 Slot 11** Buff

* Default background color.
** Default foreground color.

Compare these to the tables in the last chapter, which show the two color sets you can use
in a 4-color PMODE.

PMODE Boxes
(An Example of Changing PMODES)

Here is a program that shows a box cycle through each mode. Notice that with each mode
the box’s lines go from thick to thin, and its colors go from two colors to four colors.

2

5

10
20
30
4o
5¢
60
70

WIDTH 32

FOR MODE =0 TO 4

PMODE MODE,1

PCLS

SCREEN 1,1

LINE (75,50)-(125,100) ,PSET,B
FORY =90 TO500: NEXT Y

NEXT MODE

GOTO 5

This is PMODE's syntax. Chapter 25 shows how to use the second parameter, start page.

PMODE mode,start page sets the current graphics screen in graphics memory

mode specifies the features you want to use in graphics memory. If you omit
mode, the computer uses the last mode or (if none) Mode 2.

start page specifies on which page in graphics memory to start a graphics screen.
If you omit start page, the computer uses the last start page or (if none)
Page 1.

Therefore, if you omit PMODE, the computer uses PMODE 2,1,

Learned in Chapter 23
COMMAND

PMODE

136

24 /| A DIFFERENT
USE OF COLOR

In all our graphics programs so far, we stuck to the standard colors.

In this chapter, we introduce nonstandard colors. Before reading this chapter, you might want
to refer to Chapter 8 to refresh your memory on color codes and the palette.

o

fo)

0o, |B

Lines in Hot Pink
(Graphic’s Use of the Palette)

Take another look at Lines. Use the version that has a PCLS6 command.

2

5

10
20
25
30
40

WIDTH 32

PMODE 1,1

PCLS6

SCREEN 1,1

LINE (®,0)-(255,191) ,PSET
LINE (0,191)-(255,0) ,PSET
GOTO 4¢

With the standard palette, the PCLS6 command makes the screen cyan. But, by storing hot
pink in the palette slot that creates Color 6, the PCLS6 command makes the screen hot pink.

137

24 / A Different Use of Color

Try it. The steps are:

1.

Note which PMODE and color set you are using.

The above version of Lines is using a 4-color PMODE (PMODE 1,1) with Color Set 1
(SCREEN 1,1)

In the PMODE and color set you are using, find out which palette slot creates Color 6.
(See Tables 22.1-22.2))

Look up the color code for hot pink in the “Color Codes™ section in the back of the book.
Store this code in the proper palette slot with this program line:

8 PALETTE S5, Color Code

Run the program. The crossing lines are orange, as before, but the background screen
IS now hot pink.

DO-IT-YOURSELF PROGRAM 24-1
Change Line 5 so you are in a 2-color PMODE:
5 PMODE 4,1

Now, figure out how to make the screen hot pink.

... And a Dash of Charcoal Brown
(An Example of Medium Graphics and the Palette)

All low-resolution graphics commands use the palette in the same way. For example, change
the PCLS command in Line 10 to:

18 COLOR 7,6

Lines now looks like this:

2 WIDTH 32

5 PMODE 1,1

10 COLOR 7,6

20 SCREEN 1,1

25 LINE (8,0)-(255,191),PSET
30 LINE (8,191)-(255,0),PSET
40 GOTO 40

The COLOR command makes the foreground magenta (Color 7) and, because of the way
you altered the palette above, it makes the background hot pink (Color 6).

In this example, we alter the palette so that the foreground is charcoal brown, rather than
magenta.

138

24 / A Different Use of Color

The steps are:

1.

Note which PMODE and color set you are using.
The above version of Lines is still using a 4-color PMODE with Color Set 1.
In the PMODE and color set you are using, find out which palette slot creates Color 7.
As shown in Table 22.2, the palette slot that creates Color 7 is Slot 6.
Look up the code for charcoal brown.
Store this code in the proper palette slot.
Type:
9 PALETTE 6, Color Code

Run the program. The background is hot pink and the crossing lines are charcoal brown.

DO-IT-YOURSELF 24-2
Change Line 20 so you are in Color Set 0:
20 SCREEN 1,90

Now, figure out how to make the foreground charcoal brown.

Learned in Chapter 24
COMMAND

PALETTE

139

25 / FINDING THE RIGHT PAGES

In writing this book, we '‘stored” chapters in pages. Some chapters require more pages, some
fewer.

In the same sense, BASIC stores low-resolution graphics screens in memory pages. Some
screens require more memory pages; some fewer.

PMODE is what determines how many memory pages it takes to draw a screen. As shown
in Table 25.1, a screen drawn in a higher PMODE requires more memory pages than a screen
drawn in a lower PMODE.

Table 25.1 / Pages Required for Graphics Screens

Screen Pages Required
PMODE 4 Screen 4 pages
PMODE 3 Screen 4 pages
PMODE 2 Screen 2 pages
PMODE 1 Screen 2 pages
PMODE 0 Screen 1 page

As you learn shortly, PMODE also determines which pages are stored on a screen.

Changing Pages
(The PMODE Start-Page Parameter)

See what happens if you store the Lines screen on a different group of pages.

5 PMODE 1,1

16 PCLS

20 SCREEN 1,1

25 LINE (0,0)-(255,191),PSET
30 LINE (0,191)-(255,0) ,PSET
40 GOTO 40

Focus on PMODE. As you know, the first PMODE parameter tells the computer to start a
PMODE 1 screen. And, as Table 25-1 tells you, a PMODE 1 screen requires two pages. The
second parameter tells the computer to start the screen on Page 1. So, the 2-page Lines screen
is on Pages 1 and 2.

141

25 / Finding the Right Pages

To put the 2-page Lines screen on Pages 3 and 4, type:
5 PMODE1,3

Run the program. You see the same screen, but the screen is now on different pages.

Lines on Different Screens
(Changing the Current Graphics Screen)

What about storing two screens, one on Pages 1 and 2, and the other on Pages 3 and 47
Type this program:

5 PMODE 1,1

1% PCLS stores screen on
25 LINE (0,0)-(255,191),PSET Pages 1-2

27 PMODE 1,3

28 PCLS stores screen on
30 LINE (®,191)-(255,0),PSET Pages 3-4

4@ GOTO 49

The first part of the program starts a PMODE 1 screen on Pages 1-2. it clears this screen
and puts a line on it.

The next part of the program starts another PMODE 1 screen on Pages 3-4. It clears this screen
and puts a line on it.

Run the program and you won't see either screen, because there’'s no SCREEN statement.
So, add this command:

35 SCREEN1,1
The program now looks like this:

5 PMODE 1,1

16 PCLS stores screen on
25 LINE (9,0)-(255,191),PSET Pages 1-2

27 PMODE 1,3

28 PCLS stores screen on
30 LINE (0,191)-(255,0),PSET Pages 3-4

35 SCREEN 1,1
49 GOTO 40

Run the program. You see only one screen, the current graphics screen, which is the screen
stored on Pages 3-4.

The computer uses your most recent PMODE command to determine the current graphics
screen. In the above program, the most recent PMODE command is Line 27. It specifies the
screen stored on Pages 3-4.

Insert another PMODE line right before SCREEN:
32 PMODE 1,1

Run the program again. Now you see a different current graphics screen, the screen stored
on Pages 1-2.

142

25 / Finding the Right Pages

DO-IT-YOURSELF 25-1

Have Color BASIC display a PMODE 2 screen that starts on Page 2. Any guesses
as to what you'll see? Change Line 32 to PMODE 2,2 and run the program. Because
PMODE 2 requires two pages. you see what's on Pages 2-3. And. because this is
PMODE 2, you see this screen in two colors with low-resolution.

Flipping Screens
(An Example of PMODE Start-Page Parameter)

Animators make cartoons by drawing many still pictures and then “flipping’’ through them.
So, here's the moment you've been waiting for! This program flips screens to show two lines
in motion:

5 PMODE 1,1
19 PCLS stores Page 1-2 screen
25 LINE (0,0)-(255,191),PSET

27 PMODE 1,3
28 PCLS stores Page 3-4 screen
3¢ LINE (0,191)-(255,0),PSET

32 PMODE 1,1

34 SCREEN1,1 displays Page 1-2
36 FOR I=1TO 200:NEXT I screen

38 PMODE1,3

49 SCREEN 1,1 displays Page 3-4
42 FOR I=1TO 200:NEXT I screen

44 GOTO 32

Adding Pages
(The PCLEAR Command)

You can use a maximum of eight pages of graphics memory, pages 1-8. However, when
you first start up, BASIC gives you only half that amount, Pages 1-4. For example, make this
change to Lines:

5 PMODE 1,4
To remedy the problem, insert Line 4, and you now have all eight pages.
4 PCLEAR 8

PCLEAR lets you reserve one to eight pages of memory. If you use PCLEAR, it must be the
first or second command in your program (after CLEAR, if you use CLEAR).

PCLEAR pages reserves pages of graphics memory
pages is the amount of graphics memory to reserve (0-8)

On startup, the computer automatically reserves four pages. Use PCLEAR to reserve
more or fewer pages.

143

25 / Finding the Right Pages

You might wonder why we don't use PCLEAR 8 all the time. PCLEAR 8 decreases program
memory. Sometimes you need more program memory; other times you need more graphics
memory. PCLEAR gives you the choice.

Up and Down, Up and Down
(An Example of PCLEAR)

You can use the pages reserved with PCLEAR to store several screens. If you draw different
pictures on each screen, you can flip through them with PMODE for exciting animation.

10 PCLEAR 8

20 FORP=1TO 8

390 PMODE @,P

4® PCLS

5¢ LINE (128,0)-(138,10+(P-1)*15),PSET
6® CIRCLE (128,P*15),15

70 NEXTP

80 FOR P=1TO 8:GOSUB 110:NEXT P

9@ FORP=7 TO 1 STEP -2:GOSUB 110 :NEXT P
1860 GOTO 89

110 PMODE @,P

120 SCREEN 1,0

130 FORT=1TO 10:NEXT T

1490 RETURN

With the exception of CIRCLE (see the next chapter), you know all the features used by this
program.

Copying Pages
The PCOPY Command

Using PCOPY (Page Copy) you can copy one page of graphics memory to another. Here
is the format for PCOPY:

PCOPY page 1 TO page 2 copies page 1 to page 2

144

25 / Finding the Right Pages

For example, if you want to copy Page 3 to Page 8, type:

PCOPY 3 TO 8

One advantage of PCOPY is it can shorten your programs by eliminating repetition.

Keep in mind that PCOPY copies one graphics’ memory page. Unless you're in PMODE 0,
this is not one screen. For example, in PMODE 4, the above statement copies only one-fourth

of a screen.

The following program displays four squares that are on four different memory pages
on the screen at the same time. Run it: then shorten the program using PCOPY.

4

5

10
11
12
20
21
22
30
31
32
40
41
42
50

Using LINE and start page, simulate a lightning storm. Put “‘crazy lines’ at random
positions on different pages. Then, switch back and forth between pages.

DO-IT-YOURSELF PROGRAM 25-2

PCLEAR 8
PMODE 3,4

PCLS

SCREEN 1,1

LINE (110,20)-(120,30),PSET,B
PMODE 3,3

SCREEN 1,1

LINE (110,20)-(120,30),PSET,B
PMODE 3,2

SCREEN 1,1

LINE (110,20)-(120,30) ,PSET, B
PMODE 3,1

SCREEN 1,1

LINE (110,20)-(120,30) ,PSET, B
6OTO 50

DO-IT-YOURSELF PROGRAM 25-3

Learned in Chapter 25
COMMANDS
PMODE

PCLEAR
PCOPY

145

26 / GOING IN CIRCLES

Does all this talk about SCREEN, PMODE, and PCLEAR have you going in circles? If so,
you haven't seen anything yet!

You can create a full circle, a partial circle, or an ellipse (an oblong circle) with one command,
CIRCLE. Here is its syntax:

CIRCLE (x,y)r.chw,start.end draws a circle on the current graphics screen

X is the horizontal position of the centerpoint (0 to 255).

y is the vertical position of the centerpoint (O to 191).

ris the radius in screen points. (If r is larger than 95, the circle flattens against
the edges of the screen.)

c is any available color (0-8). If you omit ¢, the computer uses the foreground
color.

hw is the height to width ratio (0 to 255). If you omit hw, the computer uses 1.

start is the starting point (0 to 1). If you omit start, the computer starts at O.

end is the ending point (0 to 1). If you omit end, the computer uses 1.

If start equals end or if you omit both start and end, the computer draws the
complete ellipse.

With CIRCLE, you only need to know the center of the circle and the radius (the distance
from the center to the edge of the circle).

Bring your Lines program back into service.

S PMODE 1,1

10 PCLS

20 SCREEN 1,1

25 LINE (0,0)-(255,191),PSET
20 LINE (0,191)-(255,0),PSET
40 GOTO 40

Delete Line 25, and change Line 30 as follows:
30 CIRCLE (128,96),95

Run the program. Your screen shows a scruffy circle. Are you wondering why the circle isn't
truly round? Look at Line 5 and you see that the computer is in PMODE 1. (Only 128 x 96
positions are available).

147

26 / GOING IN CIRCLES

Change PMODE1 to PMODE4 (256 x 192) as follows:

5 PMODE 4,1

19 PCLS

20 SCREEN 1,1

30 CIRCLE (128,96),95
48 GOTO 40

Run the program. Now, that's a circle!

DO-IT-YOURSELF PROGRAM 26-1
Using the program above, generate a bull's-eye. You can do this one of two ways:

e Add a separate program line for each concentric circle but use a common
center (h,v coordinate).

e Use a FOR...NEXT loop with a STEP 10.

DO-IT-YOURSELF PROGRAM 26-2

Do you still have the program for the house you built? Use CIRCLE to put a doorknob
on the front door. To add full detail to the circle, run the program in PMODE 4.

Coloring the Circle
(The Color Option)

After you decide the circle’s radius, choose its color. Using 2-color PMODE, you don't have
much choice. If you use 4-color PMODE (PMODE 1 or 3), you have many options.
Your program reads:

5 PMODE 1,1

19 PCLS

20 SCREEN 1,1

30 CIRCLE (128,96),95
49 GOTO 40

First, make the circle a more manageable size:
39 CIRCLE (128,96),30

For a little variety, change the color to Color 6:
39 CIRCLE (128,96),30,6

It's as easy as that! In fact, you can make the circle any of the available colors.

148

26 / Going in Circles

Squeezing a Circle
(The Height/Width Option)

Did you ever take a Hula-Hoop, bicycle tire, or buggy wheel and squeeze it with both hands
to form an ellipse?

Similarly, you can change a circle on your screen to an ellipse by specifying a height/width
ratio (hw).

HEIGHT WIDTH

When you specify hw, the width of the circle remains the same. The height, however, is
determined by hw.

e |f hwis 1, the height is the same as the width.
e |f hwis greater than 1, the height is greater than the width.
e |f hwis less than 1, the height is less than the width.

For example, in this program, the hw is 1; so the program draws a round circle.

2 WIDTH 32
5 PMODE 4,1
19 PCLS

20 SCREEN 1,1
39 CIRCLE (128,96),30,,1
49 GOTO 40

In this program, the hw is 3, so the program draws a vertical ellipse:
3¢ CIRCLE (128,96),30,,3

In this program, the hw is .25, so the program draws a horizontal ellipse:
3p CIRCLE (128,96),30,,.25

Note that the above lines do not specify the color (c). We still have to include a comma, to
indicate that we are omitting ¢. Otherwise, the computer mistakes hw for c.

Change Line 30 in the following ways, and run the program:
30 CIRCLE (128,96 ,30,,0
3¢ CIRCLE (128,96),30,,100

When hw equals 0, the ellipse is infinitely wide (a horizontal line). And, when hw equals a
large number, the ellipse is infinitely long (a vertical line).

149

26 / Going in Circles

Splitting the Circle
(The Arc Option)

Suppose you want to draw only part of a circle (an arc). To do this, specify the start and end
of the arc, following the chart below. Keep in mind that the computer always draws clockwise.

.75

.50 0

25

Note: To draw an arc, you must specify hw. For a normal arc, use hw 1.

For example, suppose, you want to draw this arc:

75

.25

To do so, use this command:
3¢9 CIRCLE (128,96),30,1,1,.25,.75

Now change the command to draw this arc:

75

Is this your new Line 307

3¢ CIRCLE (128,96),30,1,1,.75,.25

DO-IT-YOURSELF PROGRAM 26-3

Has night fallen on the house you built? If so, you might want to put a crescent moon
in the corner. This requires two intersecting arcs and some trial and error on your part.

DO-T-YOURSELF PROGRAM 26-4

Maybe it's cold, as well as dark, around your house. If so, show smoke coming out
the chimney. (Use CIRCLE to generate a spiral that simulates the smoke.)

150

26 / Going in Circles

Learned in Chapter 26
COMMAND

CIRCLE

151

27

/| THE BIG BRUSH-OFF

You might think we forgot that this is a color computer. So far, it's been a little dab of color
here and a splotch or two of color there. You can never create a masterpiece that way! Well,
it's time now to paint the screen.

The PAINT command lets you “paint’” any shape with any available color. Its syntax is:

PAINT (x,y),c,b paints the current graphics screen

x 18 the horizontal position (0 to 255) of the point at which painting is to begin.
y is the vertical position (0 to 191).

c is the color (0 to 8).

b is the border color at which painting is to stop (0 to 8).

If the computer reaches a border other than that of the specified color, it paints
over that border.

Change the Lines program as follows:

2

5

19
20
30
Lo
50
60
70

WIDTH 32
PMODE 3,1

PCLS

SCREEN 1,1

LINE (®,0)-(255,191),PSET
LINE (0,191)-(255,0),PSET
CIRCLE (128,96),90

PAINT (135,125),8,8

GOTO 70

153

27 / The Big Brush-Off

Can you predict the results? Lines 30 and 40 draw intersecting lines. Line 50 draws a circle,
and the circle's center is where the two lines intersect. That part is easy, but what about PAINT
in Line 607

If you guess that the computer goes to Position (135,125) and paints the screen Color 8 until
it reaches a border that is Color 8, you're right!

Delete Line 30, and run the program. Now that you redefined the borders, the computer paints
half the circle.

DO-IT-YOURSELF PROGRAM 27-1

Can you paint the entire circle? You can do this two ways. One involves adding a
line; the other involves deleting a line.

DO-IT-YOURSELF PROGRAM 27-2

Do you still have your house? It probably looks fairly plain. Why not spruce it up
with some paint?

DO-IT-YOURSELF PROGRAM 27-3

Add a garage to your house, then use PAINT to raise and lower the garage door.
Since the painting action always goes up first, this takes a little refining on your part.
Add a delay before and after the opening. With CIRCLE, add the sun.

Learned in Chapter 27
BASIC WORDS

PAINT

154

28 / DRAWING SHAPES

You already know how to create lines, ellipses, and boxes. How about learning a shortcut?

The shortcut is the DRAW command. DRAW lets you draw any shape by specifying direction,
angle, and color—all in the same command!

Here is the syntax of DRAW:
DRAW shape draws a shape on the current graphics screen

shape is a string that can include the following motion subcommands, modes,
and options:

Motion Subcommands
BMx,y = Move to Position x,y
Un = Up n points
Dn = Down n points
Ln = Left n points

]

Rn = Right n points
En = 45-degree angle n points
Fn = 135-degree angle n points

Gn = 225-degree angle n points
Hn = 315-degree angle n points
X = Execute a substring and return

Modes
Sn = Scale n (1-62)
Cn = Color n (0-8)
An = Angle n (0-3)

Options
N = No update of draw position
B = Blank (no draw, just move)

Note: If you omit the start point, the computer uses the last DRAW position or, it
you haven't previously used DRAW, at the center of the screen. If you omit the number
of points it should draw, the computer draws 1 point.

155

28 / Drawing Shapes

Drawing a Shape
(The U, D, L, and R Motion Subcommands)

With DRAW, all you have to specify is where to start drawing, which direction to draw, and
how far to do so.

Change the Lines program so it looks like this:

2 WIDTH 32

5 PMODE 3,1

19 PCLS

20 SCREEN 1,1

25 DRAW '""BM128,96;U25;R25;D25;L25"
49 GOTO 40

Presto! Can you guess why the square’s lower left corner is at (128,96)?

Line 25 tells the computer to start drawing at (128,96), draw up (U) 25 points, right (R) 25,
down (D) 25, and finally, left (L) 25.

Stand the square on one of its corners. To do so, substitute E, F, G, and H for U, R, L, and
D in Line 25:

25 DRAW "BM128,96;E25;F25;625;H25"

The first line angles off at 45 degrees; the next, at 135 degrees; the next, at 225 degrees;
and the last, at 315 degrees.

There is one slight hitch in drawing angles. If you are in PMODE 0 or 1 and draw an angle
that has an odd-number length and at least one odd-number coordinate (x,y), Lines F and
H have a slight hitch at the midpoint. If both coordinates are even-numbered, Lines E and
G have the hitch. This is normal.

DO-IT-YOURSELF PROGRAM 28-1

You already know your computer is the star of the show. Now, prove it by drawing
a star.

Starting at a Relative Position
(The ““+”’ and ‘="’ Signs)

In the above examples, you told the computer to start at an absolute position. You can also
tell the computer to start drawing at a relative position.

For example, bring out this version of Lines:

2 WIDTH 32

5 PMODE 3,1

10 PCLS

20 SCREEN 1,1

25 DRAW "BM128,96;U25;R25;D25;L25"
40 GOTO 40

156

28 / Drawing Shapes

If you wish to create a second square at a position relative to the first square, you could add
this line:

3@ DRAW "BM+15,+15;U25;R25;D25;L25"

The + is an offset sign. When the computer executes Line 30, the current draw position is
(128,96), which is the last draw position in Line 25. So, to draw the new square, the computer
starts at (128+ 15,96 + 15) or (143,111).

Another offset sign you can use is -. Change Line 30 as follows:

39 DRAW "BM+15,-15;U25;R25;D25;L25"
Run the program. The start point of the new square is (128 + 15,96-15) or (143,81).
Try this line:

30 DRAW '"BM+15,15;U25;R25;D25;L25"

If you use an offset sign for the x coordinate, but omit the offset sign for the y coordinate,
the computer uses a + offset sign for the y coordinate.

DO-IT-YOURSELF PROGRAM 28-2

After all this heated activity, you're probably ready to cool off. So why don’t you use
DRAW to create an ice cube?

You can generate the entire cube using DRAW, or you can incorporate a couple
of LINE commands within the program. Try to use both absolute and relative motion.

Reducing and Enlarging a Shape
(The Scale Mode)

What if the figures you draw turn out to be too big or too small?
The solution’s easy. Use the DRAW command's scale mode.
Sn lets you scale a display

nis a number in the range 1-62 that indicates the scale factor in units of 1/4
as shown here:

1/4 scale

2/4 scale

3/4 scale

4/4 (full) scale

5/4 (125%y) scale
8/4 (double) scale
2 = 12/4 (triple) scale
etc.

1
2
3
4
5
8
1

If you omit n, the computer uses 4 (4/4=1).
After you enter Sn, the computer scales all motion subcommands accordingly.

Make your refined Lines draw a single square again. Do this by deleting Line 30 and changing
Line 25 as follows:

25 DRAW ''S2;BM128,96;U25;R25;D25;L25"

157

28 / Drawing Shapes

Run the program. The square In the lower left corner is half the size you specified.
To see how small or large a square can be. run the following program:

5 PMODE 4,1

10 PCLS

20 SCREEN 1,1

25 FOR SCALE=17T062

30 S$ =1"S" + STRE(SCALE) + ;"

35 DRAW S$ + "BM10,100U20R20D20L20"
49 NEXT SCALE

5¢ GOTO 50

Don’t make the mistake of thinking that the smallest square is the one specified in Line 35.
The one we specified is the fourth one from the edge.

When you use the scale-down option, the computer rounds the resulting line length to the
nearest whole number, it it is not already a whole number.

For example, 'S2U25R25D25L25 " results in a 12 1/2 x 12 1/2 square. The computer draws
a 13 x 13 square.

Coloring a Shape
(The Color Option)

DRAW's C option lets you specify the color of what you are drawing.
First, list the Lines program:

5 PMODE 3,1

186 PCLS

20 SCREEN 1,1

3¢ DRAW ""S2;BM128,96,;U25;R25;D25;L25"
40 GOTO 40

Go back to full scale either by changing S2 to S4 or by deleting S2. Then, right inside the
first set of quotation marks in Line 30, insert:

C6;

158

28 / Drawing Shapes

Run the program. The square is now Color 6.
Replace the C6 (in program Line 30) with C8. and run the program. The square is now Color 8.

You can insert Cn anywhere in the DRAW command. All actions that foliow are the color you
specify. For instance, change Line 30 to read:

39 DRAW "C8; BM128,96;U25;R25;C6; D25;L25"

Run the program. The program displays a 2-color square. The first two ines drawn are Color
8. The second two are Color 6.

Drawing Angles
(The Angle Mode)

The A mode lets you specify the angle at which a line I1s to be drawn. After you include A
in the DRAW command. the computer draws all subsequent lines with the angle displacement
specified by An until you specify otherwise.

Here is the syntax of the A subcommand:
An lets you specify the angle of a line
n is the angle code (0 to 3) All angles are measured clockwise.

0

0 degrees

1 = 90 degrees
2 = 180 degrees
3 = 270 degrees

it

if you omit An, the computer uses AO.
For example, your program now reads:

5 PMODE 3,1
10 PCLS

20 SCREEN 1,1

30 DRAW '"C6;BM128,96;U25;R25;D25;L25"
40 GOTO 40

Change Line 30:
390 DRAW "AD;BM128,96;U25"

Run the program. Your screen displays a vertical line that is 25 points long. Now change Line 30:
30 DRAW "A1;BM128,96;U25"

Run the program. The line is now horizontal.

159

28 / Drawing Shapes

Drawing a Blank
(The Blank Option)

If you want the next line you draw to be a “‘blank’ or an invisible line, include the B option.

For example, let's say you are drawing letters of the alphabet and are ready for the letter
C, which is nothing but a square with the right side blank. Change Line 30 as follows so the
program generates such a figure:

3¢ DRAW '""BM128,96;U25;R25 ;B ;D25;L25"

Run the program. Remember, only the line immediately following the B is blank.

DO-IT-YOURSELF PROGRAM 28-3

Print your name on the screen using DRAW. This means you have to stay in the
graphics screen. Sure, it would be easier to write your name on the text screen, but
you can’t have “true’’ text and graphics at the same time.

Drawing from the Same Point
(The No Update Option)

Another of DRAW's many features is N, the no update option. N tells the computer to return
to its original (current) position after it draws the next line. To see this, change Line 30 to read:

30 DRAW '""M128,96; N; U25; N; R25; N; D25; N; L25;"

Run the program. The computer draws a 25-point line straight up from 128,96. It then returns
to 128,96, draws the next line, returns, draws the next, and so on. As a result, four lines radiate
from the center of the screen, each in a different direction (up. right, down, and left).

DO-IT-YOURSELF PROGRAM 28-4

Using DRAW's N option (and CIRCLE), draw a pie that has eight pieces. Once you've
done that, cut out a piece of the pie and put it over to one side.

Using Substrings
(The X Subcommand)

The string following DRAW can be either a constant, as in the previous examples, or a variable.
For example, add Line 25 and change Line 30 as follows:

25 A$="BM128,96;C8;U25;R25;D25;L25"
30 DRAWAS

Run the program. Following the instructions stored in A$, the computer draws the 25 x 25
square, starting at 128,96.

160

28 / Drawing Shapes

The X subcommand lets you execute one DRAW string within another DRAW string. To do
this, leave Line 25 as it is so it defines A$. Then, change Line 30. The two lines read:

25 A$="BM128,96;C8;U25;R25;D25;L25"
30 DRAW "BM95,50;U25;R25; XA$; D25;L25"

Run the program. The computer starts drawing at 95,50 a line that extends up (U25) and
then right (R25). It then executes A$ so that it draws a 25 x 25 square starting at (128,96).
After executing A$, it returns to the original (current) string and completes its execution
(D25,L25).

DO-IT-YOURSELF PROGRAM 28-5

Do-lt-Yourself Program 28-3 shows that you can simulate text (letters) on the graphics
screen by drawing the letters. Use DRAW to create all 26 letters of the alphabet.
Store the DRAW subcommands in strings. Then use the X subcommand to arrange
the letters into words.

DO-IT-YOURSELF PROGRAM 28-6

Do your still have your house? If so, load the program again and use DRAW to make
the front door open and close.

Learned in Chapter 28
COMMAND

DRAW

161

29 /| THE DISPLAY
WENT THAT ARRAY

In previous chapters, you learned a few ways to move figures from one screen to another,
but none is very efficient. There is a better array (groan). It has to do with GET and PUT.

How It Works
(The GET and PUT Commands)

Using the GET and PUT commands, you can "‘get’ a rectangular area from the screen, store
its contents in an array (an area of memory), and then "‘put” it back anywhere you want on
the screen. This is a good method for simulating motion.

The syntaxes for GET and PUT are:

GET (x1,y1)-(x2,y2),array, G gets a rectangle from the current graphics screen
and stores it in an array

x1,y1 is the rectangle's upper-left corner.

x2,y2 is the rectangle's lower-right corner.

array is an area in memory that stores the rectangle.

G stores the array in full graphic detail. It is required when using high resolution
(PMODE 4 or PMODE 3 with colors) or when using the PUT action
parameters.

PUT (x1,y1)(x2,y2) array,action puts a rectangle, stored in an array, on the current
graphics screen

x1,y1 1s the rectangle's upper-left corner.

x2,y2 is the rectangle’s lower-right corner.

array is an area in memory where the rectangle is stored.

action (shown on Table 29-1) tells the computer what to do with the points stored
in the rectangle.

Note: Be sure the computer is in the same PMODE for GET as it is for PUT.
Otherwise, you might not “‘put” what you “got.”

163

29 / The Display Went That Array

Type and run this program to see how GET and PUT work:

5 PCLEAR 4

19 PMODE 3,1

15 PCLS

20 SCREEN 1,1

25 DIMV(20,20)

30 CIRCLE (20,20),10

35 GET (10,10)-(30,30),V

40 PCLS

42 FORDLAY =1TO300: NEXT DLAY
45 PUT (110,110)-(130,130),V
50 FORDLAY =1 TO300: NEXT DLAY
60 GOTO 60

The program draws a circle on one part of the screen and then moves it to another. To do
this, the computer:

1. Creates an array named V in memory (Line 25). Array V is big enough to store a 20 x
20 rectangle.

Draws a circle on the screen (Line 30).
Gets a 20 x 20 rectangle containing the circle and stores it in the Array V (Line 35).

Clears the screen (Line 40).

o > LD

Puts the 20 x 20 rectangle (stored in Array V) back on the screen.

Storing the Rectangle
(The DIM Command)

Because GET and PUT use an array to store the rectangle, you need to reserve memory for
this array before you use GET or PUT. The DIM command lets you do so.

DIM array(length, width) creates an array for storing a rectangle the size of
length x width points

Note: DIM needs to be one of the first lines in your program (after CLEAR
and PCLEAR, if you use them).

How large does the array need to be? This depends on how large a rectangle you want to
“get’” or “put™:

Width = x2 - x1
Length = y2 - y1

For example, this program’s GET command uses (10,10) and (30,30) to specify a rectangle.
So, the rectangle is 20 x 20. It has a width and length of 20. The PUT command uses the
same size rectangle: 20 x 20. Some rectangles might be too large to store in an array. Each
point consumes five bytes when stored in an array.

164

29 / The Display Went That Array

Another Kind of Action
(The PSET, PRESET, AND, OR, and NOT Options)

So far, you've used only one action with PUT, the PSET action. When you don’t specify an
action, the computer uses PSET.

To see how the other actions work, start by running this program. It puts 15 rectangles on
the screen using the PSET action.

5 PCLEAR &

10 DIMV (30,30)

15 PMODE 2,1

20 PCLS

25 SCREEN 1,1

3¢ CIRCLE (128,96),30

35 PAINT (128,95),2,4

40 PAINT (128,97),3,4

45 GET (98,81)-(128,111),V,6
50 PCLS

55 FORI=150TO1STEP -10

60 PUT (I,81-1/5)-(1+60,111-1/5),V,PSET
65 NEXT I

70 GOTO 70

PSET sets and resets each point as it is in the array rectangle. Each rectangie it puts on the
screen is the same as the one stored in the array.

Now, change Line 60 in various ways to try other actions. First, try PRESET.
60 PUT (I1/81-1/5)-(1+60,111-1/5),V,PRESET

PRESET sets and resets the reverse of each point in the array rectangle. Each rectangle it
puts on the screen is the reverse of the one stored in the array.

Try the OR action:
60 PUT (1,81-1/5)-(1+60,111-1/5),V,0R

OR sets each point that's either set in the array rectangle or already set in the position where
it's putting the screen rectangle. Each rectangle it puts on the screen has all points set that
are stored in the array plus what is currently on the screen.

For a strange effect, try the NOT action:
60 PUT (I,81-1/5)-(1+60,111-1/5),V,NOT

NOT sets and resets the reverse of what's on the screen. (NOT doesn’t care what'’s stored
in the array.) Each rectangle it puts on the screen is the reverse of the previous one.

Try the AND option with the program, and you won't see anything:
60 PUT (1,81-1/5)-(I+60,111-1/5),V,AND

AND sets each point that is set in the array and is already set on the screen in the position
where it's putting the rectangle. Any points that don’t meet both of those conditions are reset.
In this case, each rectangle AND puts on the screen has all points reset. You see nothing.

165

29 / The Display Went That Array

Table 29.1 Put Actions
This is a summary of each action:
Option Function
PSET Sets each point that is set in the array.
PRESET Resets each point that is set in the array; sets each point that is reset in the array.

AND Compares each point in the array rectangle with the screen rectangle. If either
or both are reset, the computer resets the screen point.

OR Compares each point in the array rectangle to the screen rectangle. If either
is set, the computer sets the screen point.

NOT Reverses the state of each point in the screen rectangle regardless of the array
rectangle’s contents.

DO-IT-YOURSELF PROGRAM 29-1

Use GET and PUT to send a spaceship up the screen. You might want to add a
few asteroids and aliens to make the voyage more exciting!

Learned in Chapter 29
COMMANDS
GET

PUT
DIM

166

PART 4 / THE BIG PICTURE

o

Qo
e 0"'\
Y .

BUTTERED

i

POPCORN

LSRN

In Chapter 17, you used the low-resolution text screen to draw simple dot-to-dot pictures. In
Part 2, you used the low-resolution graphics screen to draw lines, circles, and cubes.

In this part of the book, you use the most powerful screen for graphics, the high-resolution
graphics screen, to draw extremely detailed, colorful, and fast moving pictures.

Here's the Big Picture:

Low-Resolution
Text Screen

Low-Resolution
Graphics Screen

High-Resolution
Graphics Screen

Maximum
Positions
64x32

256x192

640x192

Maximum
Colors

9

Maximum
Memory
None

Inside BASIC

Qutside BASIC

167

THE REAL THING

Introducing . . .CoCo 3!

Sample program no. 22

Intro highlights some of the new
features of Color BASIC version 2.

Computer Art

Sample program no. 29

Random lines, circles, and boxes
create colorful computer art. Try
our program, then change it.

The Artists Palette

Sample program no. 24

Palette shows you a mixture of
sixteen colors randomly selected
from the sixty-four available colors.

The CoCo Rainbow

Sample program no. 23

Hcolors lets you see all sixty-four
colors, eight at a time.

Color Doodle
Sample program no. 30

Color Doodle lets you draw your
own computer art on the screen.
Look at the program, and add your
own special function keys.

Going Everywhere
at Once

Sample program no. 5

In-Out draws moving patterns of
lines in exciting colors. Change the
colors for more variety.

String Art
Sample program no. 28

Moving lines draw colorful string
art. The program uses random
starting points for a line, and twists
them until they bounce off the
screen edges.

Pick a Lucky Clover

Sample program no. 17

Grow your own 8-Leaf Clover.
Transplant it to other parts of the
screen.

A Sine of the Times
Sample program no. 9

Weave a wave across your screen
with a loop and some tricky
trigonometry.

This Fan is a Breeze

Sample program no. 19

Cool off in front of your own
computerized fan. Change the
colors for different effects.

ulls
H 4

This is your BASIC
tunnel . ..

See do it yourself program no. 24-1

Dig an electronic tunnel. Look at
how do it yourself program no.
24-1 draws chimney smoke. Delete
lines 25-90 and design your own
tunnel. Hint: Try a larger radius.
Experiment with the program to
change the depth and width of the
tunnel.

| CAD, Can You?

Sample program no. 7

Projection Studies gives you a
first encounter with Computer
Aided Design (CAD).

Looping Loops

Sample program no. 27

PRESS BREARK KEY TO STOP

Watch circles change in color and
grow. The sizes change at random.

PRESS BREAK KEY TO STOP

Colorful Boxes

Sample program no. 25

Colorbox draws a screen full of
boxes, then changes the colors.

Build Your Own House

Do it yourself program no. 26-4

Build a house, complete with
smoking chimney. Build your own
additions.

An Electronic Blanket

Sample program no. 13

Weave a Navaho Blanket to keep
yourself warm. Experiment with
different sizes and colors.

30 / THOUSANDS OF DOTS

The high-resolution graphics screen works in much the same way as the low-resolution graphics
screen. The only difference between the two screens is that the high-resolution screen, while
offering more features, is actually easier to use.

Creating a Graphics Screen
(The HSCREEN Command)

High-resolution graphics lets you create a graphics screen using only one command, the
HSCREEN command. HSCREEN does the same tasks that three low-resolution commands do.

e |t setsthe features to be used on the graphics screen (as does the PMODE command).
s |t displays the graphics screen (as does the SCREEN command).
e |t clears the graphics screen (as does the PCLS command).

The syntax of HSCREEN is:

HSCREEN n sets the features for displays, and clears the current high-
resolution graphics screen.

n specifies which features you want to use (0-4).
To see how HSCREEN works, type this program:

10 HSCREEN1
290 GOTO 20

When you run the program, you see a blank high-resolution graphics screen. Press (BREAK)
to return to the text screen.

HSCREEN, like PMODE, lets you choose from different settings that specify which features
you want to use. The features you can use are:

¢ Grid positions—You can use a maximum of 640 x 192 positions at a time.
e Colors—You can use a maximum of 16 colors at a time.

The available settings are listed on Table 30-1.

Table 30.1 / HSCREEN Settings

Grid Positions Colors
HSCREEN 1 320 x 192 4
HSCREEN 2 320 x 192 16
HSCREEN 3 640 x 192 2
HSCREEN 4 640 x 192 4

The HSCREEN 1 setting that we used above specifies a 320 x 192 grid with a maximum of
four colors.

In addition to these four settings, you can use a fifth setting:

HSCREEN @

169

30 / Thousands of Dots

This setting returns you to the low-resolution graphics mode. Once you have entered the high-
resolution mode, by executing an HSCREEN 1 (or 2, 3, or 4) command, you cannot display
a low-resolution graphics screen without first executing an HSCREEN 0 command.

Note that, unlike PMODE, HSCREEN does not use different pages of graphics memory. All
high-resolution screens are stored in the same area of memory.

Producing Graphics on the Screen
(The High-resolution Graphics Commands)

High-resolution graphics has a counterpart to aimost all the low-resolution commands. The
high-resolution commands, and their low-resolution counterparts, are listed in Table 30.2.

Table 30.2 / High- and Low-resolution Graphics Commands

High-Resolution

HCIRCLE
HCLS
HCOLOR
HDRAW
HLINE
HPAINT
HRESET
HSET
HPOINT

Low-Resolution

CIRCLE
PCLS
COLOR
DRAW
LINE
PAINT
PRESET
PSET
PPOINT

For example, the high-resolution HCIRCLE command corresponds to the low-resolution CIRCLE
command. Both work in aimost the same way. (The few differences are discussed below.)

170

30 / Thousands of Dots

Because high- and low-resolution commands are so similar, it is easy to convert a program
from one mode to another.

Look at the first program in Chapter 26, which draws a circle on the low-resolution screen.

5 PMODE 4,1

10 PCLS

20 SCREEN 1,17

39 CIRCLE (128,96), 95
40 GOTO 40

To convert this program to draw a circle on the high-resolution screen, type:

10 HSCREEN 2
30 HCIRCLE (160,96), 95
40 GOTO 40

A Different Use of Grids
(High- v Low-resolution Commands)

Unlike the low-resolution commands, the high-resolution commands use exact, rather than
scaled, grid positions. This means that if you change to a different high-resolution grid, you
need to change the dot positions in the high-resolution program.

For example, the Circle program is currently using a 640 x 192 grid.

10 HSCREEN 4
30 HCIRCLE (160,96), 95
49 GOTO 40

Change the HSCREEN setting so that it uses a 320 x 192 grid:
1@ HSCREEN 1

Now, run the program. Because you changed to a 320 x 192 grid, the circle appears at a
different place on the screen. To make it appear at the same place, change the dot positions
in the HCIRCLE command:

30 HCIRCLE (89,96), 95

A Different Use of Color
(High- v Low-resolution Commands)

High-resolution graphics commands use the palette in a different way than their low-resolution
counterparts.

For example, add a line to the ““Circle” program so that the computer paints the circle Color 1.
35 HPAINT (1690,96),1,1

Now, run the program. In the low-resolution mode, the circle would have been painted one
of several different colors, depending on which color mode (2-color or 4-color) and color set
(Color Set 1 or 2) you were using.

171

30 / Thousands of Dots

In the high-resolution mode, Color 1 always specifies the same color: the color stored in Palette
Slot 1.

To paint the circle a nonstandard color, such as color code 23, store the color code in Palette
Slot 1. Type this line and run the program.

3 PALETTE 1, 23

Table 7.9 in "Odds and Ends” shows how the high-resolution graphics commands use the
palette in each HSCREEN color mode.

A Better Way of Printing
(The HPRINT Command)

One major drawback of using a low-resolution graphics screen is that you cannot easily print
amessage on it. Sure, you can use the DRAW command to make each letter, but this is tedious
and requires a lot of memory.

In the high-resolution mode, the HPRINT command prints a message directly on the high-
resolution graphics screen. Its syntax is:

HPRINT(x,y), message Prints message at Text Position x,y on the high-resolution
graphics screen.

HPRINT requires that you give text positions, rather than graphics positions. A 320 x 192
graphics screen corresponds to a 40 x 24 text screen. A 640 x 192 graphics screen corresponds
to an 80 x 24 text screen.

So, in HSCREEN 1 or HSCREEN 2, 40 columns are available. In HSCREEN 3 or HSCREEN
4, 80 columns are available. If the message is longer than the number of columns available,
the last part of the message is clipped.

These are examples of HSCREEN commands:

HPRINT(®,20), "The Score is ", SC
HPRINT(®,®), "Your name is '"; A%
HPRINT (10,1¢), AS+B$

Learned in Chapter 30
COMMANDS FUNCTION

HSCREEN HPOINT
HCIRCLE, HCLS,

HCOLOR, HDRAW

HLINE, HPAINT,

HRESET, HSET,

HPOINT

PALETTE

HPRINT

172

31 / GRAPHICS STORAGE

GET and PUT are useful commands in the low-resolution mode. These commands let you
“get” a rectangle, store it in an array, and “‘put’ it somewhere else on the screen.

The problem is that an array consumes valuable memory space and, by doing so, takes away
memory space that the BASIC program could be using.

The high-resolution counterparts of GET and PUT do not use an array to store the rectangle.
In fact, they do not use any storage within the BASIC area. Instead, they use special GET/PUT
buffers, which are areas of memory outside BASIC.

Reserving a Buffer
(The HBUFF Command)

Before you can use a GET/PUT buffer, you need to tell BASIC know you plan to use it. You
can do this using a special high-resolution command called HBUFF.

The syntax of HBUFF is:
HBUEF buffer, sizé Reserves a GET/PUT buffer.

buffer is a number that labels the GET/PUT buifer.
size is the size of the GET/PUT buffer, where size =(number of bytes-1).

To use HBUFF, BASIC needs to know how much buffer memory to set aside to store the
rectangle. The unit of measure for memory is called a byte. Depending on the HSCREEN
mode you are using, each byte can store 2, 4, or 8 dots from the screen. Table 31.1 shows
how many dots BASIC stores in a byte, depending on the HSCREEN mode you are using.

173

31 / Graphics Storage

Table 31.1 / Memory Required for Graphics

Screen mode Dots per Byte
HSCREEN 1 4
HSCREEN 2 2
HSCREEN 3 8
HSCREEN 4 4

As an example, suppose you want to do an HGET of the rectangle (10,5)-(30,15) in HSCREEN
1. BASIC rounds the X coordinates down to the nearest byte, according to the graphics screen
mode you are using. BASIC reads the first X value of 10, and divides it by the number of
dots per byte for HSCREEN 1 (See table 31.1).

10/4 =25

Because BASIC rounds down for HGET/HPUT X coordinates, ignore the fraction to the right
ot the decimal point. This gives you an answer of 2. Multiply this number by the number of
dots per byte for HSCREEN 1. The result is the first X coordinate that BASIC will use for the
HGET.

24 =28

You have now solved aimost half of the mystery. The other X coordinate is solved the same way.
30/ 4 = 7.5 (Ignore the fraction)
74 =28

So, in HSCREEN 1, if you tell BASIC to HGET(10,5)-(30,15) it will actually HGET(8,5)-(28,15).
Now, solve the last part of the mystery. What size does HBUFF need to be to store
HGET(8,5)-(28,15) in HSCREEN 17 Here is how to figure it out.

Subtract the smaller X coordinate value (8) from the larger X coordinate value (28).
28 -8 = 20

Add 1 to the result.
20+ 1 =21

Divide the new result (21) by the number of dots per byte for HSCREEN 1 (4).
21/4 =525

If there is a fraction in the answer, round the answer up to the next higher whole number.
Because you got an answer of 5.25, and not 5, round the answer up to 6. This is the number
of bytes required to store each row, or the width of the HGET rectangle in bytes. Now, subtract
the smaller Y coordinate value (5) from the larger Y coordinate value (15).

15-5 = 10
Add 1 to the resuit.
10+1 =11

This answer is the height of the HGET rectangle in dots. To find out the total number of bytes
required to store the rectangle, multiply the width in bytes (6), by the height in dots (11).

6*11 =66

174

31 / Graphics Storage

Because size equals the number of bytes minus 1, subtract 1 from this value.
66 -1 = 65

Therefore, an HGET(10,5)-(30,15) in HSCREEN 1 requires an HBUFF with a size value of 65.
To see what HBUFF looks like in a program line, examine the line below. This line assigns
HBUFF buffer number 1 a size of 65. Remember that size is 1 less than the number of bytes
the buffer can store. In this example, the HBUFF can store 66 bytes.

10 HBUFF 1,65

Getting a Rectangle into the Buffer
(The HGET Command)

To get a rectangle and put it into the buffer, you use the HGET command. HGET s the
counterpart to GET. Its syntax 1s:

HGET(x1,y1)-(x2 y2) buffer Gets a rectangle from the high-resolution graphics
screen and stores it in buffer.

The following program draws a small box near the top left corner of the screen and gets it
into buffer 1.

1¢ HBUFF 1, 43

20 HSCREEN &

3¢ HLINEC(19,0)-(20,10) ,PSET,B
49 HGET(10,0)-(20,10),1

50 GOTO 5@

Putting the Rectangle on the Screen
(The HPUT Command)

To put the rectangle on the screen, you use the HPUT command, which corresponds to PUT.
Its syntax is:

HPUT(x1,y1)-(x2y2) buffer.action Puts a rectangle from buffer on the high-
resolution graphics screen using the specified action. The action can be PSET,
PRESET, AND, OR, and NOT.

This line puts the box elsewhere on the same screen:
45 HPUT(26,20)-(36,38),1,PSET

Remember that the color codes that are put on the screen refer to palette slots. Try using
AND and OR. You might get some surprising and colorful results.

175

31 / Graphics Storage

Learned in Chapter 31

BASIC Words Concepts
HBUFF Reserving a buffer
HGET and HPUT Using the buffer for moving or

duplicating a rectangie

176

PART 5 /
GETTING DOWN TO BUSINESS

In this part of the book, we get down to business and deal with data—for example. checkbook
receipts, tax records, address, and books. You'll learn to organize this data by writing programs
that file, update, print, and analyze.

177

32 / STORING DATA

Storing a BASIC program on tape is easy. You simply use the CSAVE command. Storing data
on tape takes a littte more effort. You need a program.

CHRISTMAS LIST:

‘RELANULES
PS

RECORDS.

. Por

== . CONTRY/WRSIERN
" CLASSICAL

This chapter shows how to write two programs for storing data on tape. The first program
stores data on tape. The second retrieves data from tape.

A Program to Output Data
(The OPEN, PRINT #, and CLOSE Commands)

Assume you want to store these checks on tape:

PUBLIC HOSPITAL
PAUL'S GROCERY
CHARITY FUND

DANDY OFFICE SUPPLY

Start with a short, simple program that stores the first check, "PUBLIC HOSPITAL,” to tape.
Type:

1¢ OPEN "0", #-1, "CHECKS"
20 PRINT #-1, "PUBLIC HOSPITAL"
3¢ CLOSE #-1

Prepare the tape recorder for recording:
1. Connect your tape recorder.
2. Insert a tape In your tape recorder, and rewind the tape.

3. Press your recorder's PLAY and RECORD buttons until they lock.

179

32 / Storing Data

Run the program. The tape recorder turns on while the computer does several tasks.
* [t opens communication with the tape recorder.
* |t prepares to store data.
e It labels the area of the tape where it will store data as a file named “"CHECKS."
This all happens in Line 10. Note the meaning of the #-1, “O", and "CHECKS"™:
e #1 specifies the tape recorder.
e 0" stands for output,
¢ "CHECKS'" specifies a filename.
The next ling, Line 20, sends "PUBLIC HOSPITAL" to the tape recorder.
The last line, Line 30, closes communication with the tape recorder.

The program we wrote, which we call an output program, uses three new commands. Their
syntaxes are:

OPEN mode, device, file Opens communication with device so you can
transmit information to file using the specified mode of data transmission.

mode can be """ (Input) or 0" (Output) device can be #0 (screen or keyboard),
#-1 (cassette), or #-2 (printer).

PRINT #device, message Prints a message to device.

CLOSE #device Closes communication with device.

A Program to Retrieve Data
(The INPUT # Command)

To load data back into memory, you need an input program. Erase the output program you
now have in memory, and type:

100 OPEN "I', #-1, "CHECKS"
110 INPUT #-1, AS

120 PRINT AS

130 CLOSE #-1

Prepare the recorder for loading data:
1. Rewind the tape.

2. Press the PLAY button.

3. Then, run the program.

Line 100 opens communication with the tape recorder, this time to retrieve (‘") data from
a file named "CHECKS".

Line 110 inputs a data item from “CHECKS'" and labels this item as A$. Line 120 displays AS.

Line 120 closes communication with the tape recorder.

180

32 / Storing Data

The input program uses another new command. Its syntax is:

INPUT #device Retrieves information from device until one of the following
characters is encountered: a comma (,), @ semicolon (;), or a carriage return
((ENTER)).

Finding the End of the File
(The EOF Function)

Suppose you don't know how many data items are stored in “CHECKS". You want to retrieve
all the data items until you reach the end of the file.

You can do this by adding these lines to the input program you now have in memory:

185 IF EOF(-1) = -1 THEN 130
125 GOTO 105

Line 105 checks to see if you reached the end of the file.

e |If you have, EOF(-1) equals -1. The computer goes to Line 30 and closes
communication with the file.

« |f you have not, FOF(-1) does not equal -1. The computer retrieves the next data
item in the file.

To see if you have reached the end of the file, you used a new function. Its syntax is:

EOF(device) Returns a number indicating whether you've reached the end of the
file on device. The number returned is -1 (end of file) or 0 (not the end of file).

Storing More Data

So far, "CHECKS'"' has been easy to handle, but not very useful. Suppose you want to store
all this information in “CHECKS":

CHECKS
PAYABLE TO AMOUNT EXPENSE
PUBLIC HOSPITAL 45.78 MEDICAL
PAUL'S GROCERY 22.50 FOOD
CHARITY FUND 20.00 CONTRIBUTION
SALES OFFICE 13.67 BUSINESS

Here is an output program that lets you store all the above information, not only for the four
checks listed above, but for as many checks as you want:

5 CLS

10 OPEN "0'", #-1, "CHECKS"

20 INPUT "CHECK PAYABLE TO :''; A$
30 IFA$ ="' THEN 80

40 INPUT "AMOUNT : $"; B

5@ INPUT "EXPENSE :"; C$

60 PRINT #-1, AS, B, C$

70 GOTO 29

80 CLOSE #-1

181

32 / Storing Data

Here is a complementary input program that retrieves all the checks you stored until it reaches
the end of the file:

109 OPEN '"I", #-1, "CHECKS"
110 IF EOF(-1) = -1 THEN 150
120 INPUT #-1, A%, B, C$
150 PRINT A$; B; C$

160 GOTO 110

170 CLOSE #-1

Learned in Chapter 32

COMMANDS FUNCTION
OPEN EOF
CLOSE

PRINT #

INPUT #

182

33 / NUMERIC ARRAYS

In this chapter, we show how to organize large groups of numbers using a new kind of variable
and a new way of organizing variables.

Chin] [8es]

Adary

A New Kind of Variables
(Subscripted Variables)

Assume you want to store all the votes for Districts 1-14 into variables:

ELECTION RETURNS

District Votes for Candidate
1 143
2 215
3 125
4 331
5 442
6 324
7 213
8 15
9 318
10 314
11 223
12 152
13 314
14 92

One way is to store them in the same kind of variables you've been using all along, simple
variables. For example, store the votes for the first three districts into simple variables by typing:

143 (ENTER
215 (ENTER
125 (ENTER

A

U u u

183

33 / Numeric Arrays

A better way is to use subscripted variables. Type:

A(1) = 143 (ENTER!

A(2) =215 (ENTER.
A(3) =125 (ENTER)

Subscripted variables have subscripts such as (1), (2), and (3). Other than the subscripts, they
work the same as simple variables. To see for yourself, type both of these lines:

PRINT A; B; C (ENTER)
PRINT AC1);A(2);A(3) (ENTER)

A Way of Organizing Subscripted Variables
(Arrays and the DIM Command)

Take a quick look, and compare the two programs below. Both work the same. Program 1
uses simple variables; Program 2 uses subscripted variables.

PROGRAM 1

10 DATA 143,215,125,331,442

20 DATA 324,213,115,318,314

39 DATA 223,152,314,92

40 READ A,B,C,D,E

50 READ F,G,H,I,J

60 READ K,L,M,N

70 INPUT "DISTRICT NO. (1-14)";2
75 I1F Z>14 THEN 70

80 IF Z=1 THEN PRINT A "VOTES"

9@ IF Z=2 THEN PRINT B "VOTES"
10® IF 2=3 THEN PRINT C "VOTES"
110 IF Z=4 THEN PRINT D "VOTES"
120 IF Z=5 THEN PRINT E "VOTES"
130 IF Z=6 THEN PRINT F "VOTES"
140 IF 2=7 THEN PRINT G "VOTES"
150 IF Z=8 THEN PRINT H "VOTES"
160 IF Z=9 THEN PRINT I "VOTES"
170 IF Z=10 THEN PRINT J "VOTES"
180 IF Z=11 THEN PRINT K "VOTES"
199 IF 2=12 THEN PRINT L ""VOTES"
200 IF Z=13 THEN PRINT M "VOTES"
210 I1F Z=14 THEN PRINT N "VOTES"
220 GOTO 70

PROGRAM 2

10 DATA 143,215,125,331,442
20 DATA 324,213,115,318,314
30 DATA 223,152,314,92

490 DIMA(14)

50 FOR X=17T0 14

60 READ A(X)

70 NEXT X

8® INPUT "DISTRICT NO (1-14)";2
85 IF Z>14 THEN 80

99 PRINT A(Z) "VOTES"

10¢ GOTO 8¢

184

33 / Numeric Arrays

Program

1 is cumbersome to write. Program 2 is short and simple to write.

Enter and run Program 2. Here's how it works:

Line 40 reserves, or dimensions, space for an array named A with subscripted
variables ranging from A(0) to A(14).

Lines 50 and 70 set up a loop to count from 1 to 14.

Line 60 reads all 14 votes into Array A:

YOUR COMPUTER'S MEMORY

AC1) =143 A(8) =115
A(2) =215 A(9) =318
A(3) =125 AC19) =314
AC4) =331 AC11) =223
A(5) = 442 A(C12) =152
A(6) =324 AC13) =314
A(7) =213 AC14) =92

Line 80 asks you to enter a subscript, and Line 90 prints the item you requested.

Line 40 uses a new BASIC command, DIM. DIM’s syntax is:

D IMvariable(n) Dimensions variable as an array with n subscripts.

Note: Actually, you are only required to use DIM when you plan to use
subscripts higher than 10. However, even if you're not using subscripts higher
than 10, it's a good idea to use DIM anyway, for reserving exactly the right amount
of memory.

Now that you stored information in an array, it's easy to manage the information. For instance,
add these lines, to change the information:

92
94
96
97
98

INPUT "DO YOU WANT TO ADD TO THIS'" ;RS

IF R$="NO" THEN 890

INPUT "HOW MANY MORE VOTES'"; X

A(2)=A(Z) + X

PRINT "TOTAL VOTES FORDISTRICT "2"IS NOW "A(2)

Or add these lines to display the information:

72

74

100
110
120
130
1409
150

INPUT "DO YOU WANT TO SEE ALL THE TOTALS'";S$
IF S$="YES" THEN GOSUB 1190

GOTO 72

PRINT "DISTRICT'", "VOTES"

FOR X=1 T0 14

PRINT X,A(X)

NEXT X

RETURN

185

33 / Numeric Arrays

Adding a Second Array
(Using 2 Arrays)

Assume you also want to keep track of a second candidate’s votes, Candidate B:

ELECTION RETURNS

District Votes for Votes for
Candidate A Candidate B
1 143 678
2 215 514
3 125 430
4 331 475
5 442 302
6 324 520
7 213 613
8 115 694
9 318 420
10 314 518
11 223 370
12 152 412
13 314 460
14 92 502

Add another array to the program. Call it Array B. The following program records the votes
for Candidate A (Array A) and Candidate B (Array B):

10 DATA 143,215,125,331,442
20 DATA 324,213,115,318,314
30 DATA 223,152,314,92

40 DATA 678,514 ,430,475,302
S@ DATA 520,613,694,420,518
60 DATA 370,412,460,502

70 DIMA(14), B(14)

80 FORX=1TO014

90 READ A(X)

100 NEXT X

110 FORX=1TO 14

120 READ B(X)

130 NEXT X

140 INPUT "DISTRICT NO.";Z
145 IF 2>14 THEN 140

150 INPUT "CANDIDATE A OR B" ;RS
160 IF R$="A" THEN PRINT A(2)
170 IF R$="B" THEN PRINT B(2)
180 GOTO 140

DO-IT-YOURSELF PROGRAM 33-1

Write an inventory program that keeps track of 12 items (numbered 1-12) and the
quantity you have of each item.

186

33 / Numeric Arrays

Dealing The Cards
(An Example of Arrays)

To keep track of 52 cards, you need to use an array. Erase your program. Type and run this one:

49 FOR X=1T052
50 C=RND(52)
90 PRINTC;

100 NEXT X

The computer deals 52 random cards, but if you look closely, you see that some cards are
the same.

To be sure the computer deals each card only once, you can build another array, Array T,
that keeps track of each card dealt. Add these lines:

5 DIMT(52)

19 FOR X=1T052
20 T(X)=X

390 NEXT X

The previous lines build Array T and put all 52 cards init: T(1)=1, T(2)=2, T(3)=3 . . . T(52) =52.
Now, add some lines that “‘erase’” each card in Array T after it's dealt. Type:

6@ IFT(C)=0 THEN 590
80 T(C)=9

Now the computer can't deal the same random card twice. For example, assume the computer
first deals a two. Line 80 changes T(2)'s value from 2 to 0.

Then, assume the computer deals another two. Since T(2) now equals 0, Line 60 goes back
to Line 50 to deal another card.

Run the program. Note how the computer slows down at the end of the deck. It must try many
different cards before it finds one that it hasn’t dealt yet.

To play a card game, you need to keep track of which cards were dealt. You can do this
by building another array, Array D. Add these lines that store all the cards in the order they
are dealt in Array D:

7 DIMD(52)
70 D(X) =T(C)
99 PRINT D(X);

DO-IT-YOURSELF PROGRAM 33-2

Add lines to the program so it displays only your “hand,” the first 5 cards dealt.

187

33 / Numeric Arrays

LEARNED IN CHAPTER 33
COMMAND CONCEPT

DIM arrays

188

34 / STRING ARRAYS

In the last chapter, you used arrays to manage numbers. Here, you use arrays to manage
words by editing, updating, and printing an entire essay.

Storing Words Into Variables
(String Arrays)

Start with a simple list of words, a shopping list.

1. EGGS 7. TOMATOES
2. BACON 8. BREAD

3. POTATOES 9. MILK

4. SALT 10. CHEESE

5. SUGAR 11. FISH

6. LETTUCE 12. JUICE

Assign each word to a subscripted variable. This time use a subscripted string variable. For
example, for the first three items, type:

S$(1) = "EGGS" (ENTER)

$$(2) = "BACON' (ENTER)
S$(3) = "POTATOES' (ENTER)

To see how the items are stored, type:

PRINT S$(1), S$(2), s$(3) (ENTER

189

34 / String Arrays

Now build a program that reads these words into an array named S$ and then displays them.

5 DIMS$(12)

10 DATA EGGS, BACON, POTATOES, SALT
20 DATA SUGAR, LETTUCE, TOMATOES, BREAD
39 DATAMILK, CHEESE, FISH, JUICE
49 FOR X=1T7012

50 READ S3(X)

60 NEXT X

70 PRINT '"SHOPPING LIST:"

80 FORX=1T012

90 PRINT X; S$(X)

100 NEXT X

DO-IT-YOURSELF PROGRAM 34-1

Add some lines to the above program so you can change any item on this list.

DO-IT-YOURSELF PROGRAM 34-2
Here is a program that uses an array to write song lyrics.

5 DIMAS(4)

1@ PRINT "TYPE 4 LINES"
20 FOR X=1T04

30 INPUT AS(X)

49 NEXT X

56 CLS

60 PRINT "THIS IS YOUR SONG"
70 PRINT

80 FOR X=1T04
90 PRINT X; ' '; A$(X)
100 NEXT X

Add some lines so you can revise any line

190

34 / String Arrays

Writing an Essay
(An Example of String Arrays)

Now that you learned how to use string arrays, it is easy to write a program that stores and
edits what you type. Type this program:

1 CLEAR 509

S5 DIMAS(59)

10 PRINT "TYPE A PARAGRAPH"

20 PRINT "PRESS </> WHEN FINISHED"

30 XxX=1
40 AS$ = INKEYS$
50 IF A$ =" " THEN 40

60 PRINT AS;

70 IFA$='/"THEN 119

80 AS(X) = AS(X) + AS

990 IFAS="_"THENX=X+1
100 GOTO 49

119 CLS
120 PRINT "YOUR PARAGRAPH:"
130 PRINT

140 FORY=1TOX -1
150 PRINT AS(Y);
160 NEXTY

170 PRINT

Run the program. To see how each sentence is stored, type these lines:

PRINT A$(1) (ENTER)
PRINT A$(2) (ENTER)
PRINT A$(3) (ENTER)

Here's how the program works:

1. Line 1 clears plenty of string space.

2. Line 5 saves room for an array named A$ that can have up to 50 sentences.
3. Line 30 makes X equal to 1. X will be used to label all the sentences.
4

Line 40 checks to see which key you are pressing. If it is nothing ("' '), Line 50 sends
the computer back to Line 40.

o

Line 60 prints the key you pressed.

6. Line 70 sends the computer to the lines that print your paragraph when you press
the *'/"" key.

7. Line 80 builds a string and labels it with number X. S is equal to 1 until you press
a period (.). Then Line 90 makes X equal to X + 1.

8. Lines 140—160 print your paragraph.

For example, if the first letter you press is “‘R,"
A$(1) EQUALS "R".

If the second letter you press is "'O"',

A%(1) EQUALS A$(1) - which is “R™ + Q"
or
“RO".

191

34 / String Arrays

Assume when A$(1) equals ROSES ARE RED, you press a period. A$(1) then equals the
entire sentence, ROSES ARE RED. The next letter you press is in A$(2).

DO-IT-YOURSELF CHALLENGER PROGRAM 34-3

Here's a tough one (but not impossible) for those intrigued with word processing.
Change the previous program so you can:

* Print any sentence
* Revise any sentence

You might need to review the challenger program in Chapter 12. Our answer’s in
the back.

Using the Printer
(The PRINT # and LLIST Commands)

If you have a printer, connect it now by plugging it into the jack marked SERIAL 1/0O. Turn
on the printer and insert paper. The manual that comes with the printer shows how. Ready?
Type this short program:

10 INPUT AS
20 PRINT #-2,A$

Now type:
LLIST (ENTER

If your program doesn't list on the printer, be sure the printer is on-line (on) and connected
to your keyboard. Then, type LLIST again.

Run the program and watch the printer work. PRINT #-2, tells the computer to print, not on
the screen, but on device #-2, which is the printer. Be sure to type a comma after the -2, or
you get a syntax error.

DO-IT-YOURSELF PROGRAM 34-4

Look at the "“Writing an Essay’’ program earlier in this chapter. Change Lines 140-160
so that the paragraph prints on the printer rather than on the screen.

Learned in Chapter 34

COMMANDS CONCEPT
LLIST string arrays
PRINT #-2

192

35 / MULTIDIMENSIONAL ARRAYS

Arrays provide an easy way to analyze information. By giving each item more than one
subscript, you can see it through different dimensions.

Storing Tables of Numbers
(2-Dimensional Arrays)

Votes for Votes for
District Candidate 1 Candidate 2
1 143 678
2 215 514
3 125 430

In this chapter, you'll store information in one easy-to-manage 2-dimensional array, Array V.
The following program puts the items in Array V.

5 DIMV(3,2)

10 DATA 143,678,215,514,125,430
20 FORD=1T03

39 FORC=1T02

49 READ V(D,C)

5¢ NEXTC

60 NEXTD

7¢ INPUT "DISTRICT NO. (1-3)";D
80 IF D<1 ORD>3 THENT7@

9@ INPUT "CANDIDATE NO. (1-2)'";C
100 IF C<@ OR C>2 THEN 9¢

110 PRINT V(D,C)

120 GOTO 790

193

35 / Multidimensional Arrays

Type and run the program. Notice that each item is labeled by two subscripts.
Here's how the program works:

Line 5 reserves space in memory for Array V. Each item in Array V can have two subscripts.
The first can be no higher than 3. The second, no higher than 2.

Lines 20-60 read all the votes into Array V, giving them each two subscripts:
e The first subscript is the district (Districts 1-3).

e The second subscript is the candidate (Candidates 1-2).

YOUR COMPUTER'S MEMORY

V(1,1) =143 V(1,2) =678
V(2,1) =215 v(2,2) =514
V(3,1) =125 V(3,2) =43¢

For example, 678 is labeled V(1,2). This means 678 is from District 1 and is for Candidate 2.

With all the votes in a two-dimensional array, it's simple to analyze them—in two dimensions.
By adding these lines, for example, you can print all the votes in two ways: by district and
by candidate.

(First delete lines 70-120)

70 INPUT "TYPE <1> FORDISTRICT OR <2> FOR
CANDIDATE";R

80 IF R<1ORR>2 THENT7®

109 ON R GOSUB 1000, 2000

110 GOTO 70

1000 INPUT "DISTRICT NOC1-3)";D

1010 IF D<1 OR D>3 THEN 1000

1915 CLS

1020 PRINT @132, "VOTES FROMDISTRICT" D
1030 PRINT

1049 FOR C=1T02

1050 PRINT "CANDIDATE:" C,

1060 PRINT V(D,C)

1070 NEXT C

1980 RETURN

2000 INPUT "CANDIDATE NO(1-2)";C

2019 IF C<1 OR C>2 THEN 2000

2015 CLS

2020 PRINT @132, "VOTES FOR CANDIDATE"C
2030 PRINT

2049 FORD=1T03

205¢ PRINT "DISTRICT"D,

2069 PRINT V(D,C)

20790 NEXTD

2080 RETURN

194

35 / Multidimensional Arrays

The Third Dimension
(3-Dimensional Arrays)

You can continue with as many dimensions as you want. You're limited only by how much
information you can fit into the computer’s memory.

Add a third dimension to Array V: interest groups. Here’s the information:

VOTES FROM INTEREST GROUP 1

Candidate 1 Candidate 2
District 1 143 678
District 2 215 514
District 3 125 430
VOTES FROM INTEREST GROUP 2
Candidate 1 Candidate 2
District 1 525 54
District 2 318 158
District 3 254 200
VOTES FROM INTEREST GROUP 3
Candidate 1 Candidate 2
District 1 400 119
District 2 124 300
District 3 75 419

To get all this into your computer’s memory, erase your program and type:

5 DIMV(3,3,2)

10 DATA 143,678,215,514,125,439
20 DATA 525,54,318,158,254,200
30 DATA 400,119,124,300,75,419
40 FORG=1T03

50 FORD=1T03

60 FORC=1T02

70 READ V(G,D,C)

80 NEXTC
99 NEXTD
100 NEXT G

110 INPUT "INTEREST GROUP NO (1-3)";G
120 IF 6G<1 OR G>3 THEN 110

130 INPUT "DISTRICT NO. (1-3)"; D
140 IFD<10RD>3THEN 130

150 INPUT "CANDIDATE NO. (1-2)";C
16@ IF C<1 ORC>2 THEN 159

1706 PRINT V(G,D,C)

18¢ GOTO 110

195

35 / Multidimensional Arrays

Run the program, and test the subscripts. Lines 40-100 read all the votes into Array V, giving
them each three subscripts:

e The first subscript is the interest group (Interest Groups 1-3).
e The second subscript is the district (Districts 1-3).

* The third subscript is the candidate (Candidates 1-2).

YOUR COMPUTER'S MEMORY

V({1,1,1) =143 V(1,1,2) =678
v{1,2,1) =215 v(1,2,2) =514
vV(1,3,1) =125 V(1,3,2) =430
vee,1,1) =525 v(z2,1,2) =54
v(z2,2,1) =318 v(z2,2,2) =158
vV(2,3,1) =254 v(z2,3,2) =200
V(3,1,1) =400 vVe3,1,2) =119
V(3,2,1) =124 vV(3,2,2) =300
vV(3,3,1) =75 V(3,3,2) =419

For example, 678 is now LabeledV(1,1,2). Thismeans 678 is from
Interest Group 1, is fromDistrict 1, and is for Candidate 2.

Totake advantageofall threedimensions, deletelLines 110-180
and type:

11® PRINT: PRINT "TYPE <1> FOR GROUP"

120 PRINT '""<2> FORDISTRICT OR <3> FOR CANDIDATE"
130 P=224 : INPUTR

149 ON R GOSUB 1000,2000,3000

15¢ GOTO 110

1000 INPUT "GROUP (1-3)";G
1010 IF G<1 OR G>3 THEN 1009
1020 CLS

1030 PRINT @102, "VOTES FROM GROUP"G
10490 PRINT @168, "CAND. 1"
1050 PRINT 8176, '""CAND. 2"
1060 FORD=1TO03

1070 PRINT @P, "DIST."D

1080 FORC=1T02

1199 PRINT aP + 8*C, V(G6,D0,C);
1110 NEXTC

1120 P=p+32

1130 NEXT D

1140 RETURN

196

35 / Multidimensional Arrays

2000
2010
2020
2030
2040
2050
2069
20709
2089
2100
2110
2120
2130
2140

3000
3010
3020
3030
3040
3950
3060
3070
3075
3080
3110
31209
3130
3140

INPUT "DISTRICT (1-3)";D
IF D<1 OR D>3 THEN 2000
cLS

PRINT @102, "VOTES FROM DIST."D
PRINT 3168, "CAND. 1"
PRINT @176, "CAND. 3"
FOR 6=1 T0 3

PRINT @P, "GROUP"G

FOR C=1 TO 2

PRINT @P + 8%C,V(G,D,C);
NEXT C

P=p+32

NEXT G

RETURN

INPUT "CANDIDATE (1-2)";¢C
IF C<1 OR C>2 THEN 3000
CLS

PRINT @1@2, "VOTES FOR CAND." C
PRINT @168, "DIST. 1"
PRINT @176, "“DIST. 2"
PRINT @184, "DIST. 3"

FOR G=1T0 3

FOR D=1 T0 3

PRINT QP + 8%D, V(G,D,C);
NEXT D

P=P+32

NEXT G

RETURN

Run the program. You can now get three perspectives on the information.

DO-IT-YOURSELF PROGRAM 35-1

Write a program to deal the cards using a two-dimensional array. Make the first
dimension the card's suit (1-4) and the second dimension the card'’s value (1-13).

Learned in Chapter 35
CONCEPT

Multidimensional arrays

197

PART 6 / BACK TO BASICS

Ready for more basics? In this part of the book, you learn some new BASIC words that will
help you refine and polish your programs.

199

36 / NUMBERS

You can use many numeric functions to help with mathematical calculations. This chapter lists
these functions and also shows how you can create some functions of your own.

s’géb’o‘bo“éobddd 0GO0-
: O*

IR 8

Arithmetic Functions
(The SQR, FIX, ABS, and SGN Functions)

The first group of functions help with arithmetic problems. They are the SQR, FiX, ABS, and
SGN functions.

SQR lets you find the sguare root of a number. lts syntax is:
SQR (number)
number is zero or any positive number,

As an example SQR, type:
PRINT SQR (100) (ENTER)

The computer displays 10, the square root of 100.

FIX converts a number to a whole-number by chopping off all the digits to the right of the
decimal point. Its syntax is:

FIX (number)
As an example of FIX, type:
PRINT FIX (2.7643951) (ENTER)
The computer displays 2, the whole portion of 2.7643951.
As another example FiX, this program breaks a number into its whole and fractional portions.

19 CLS

20 INPUT "A NUMBER LIKE X.YZ"; X
30 W=FIX (X)

40 F=ABS(X)-ABS (W)

50 PRINT "WHOLE PART="; W

60 PRINT "FRACTINAL PART="; F
70 GOTO 20

201

36 / Numbers

SGN tells you whether a number is positive, negative, or zero. Its syntax is:
S GN(number)
As an example of SGN, run this program:

19 INPUT "TYPE A NUMBER"; X

20 IF SGN(X) =1 THEN PRINT "POSITIVE"
30 IF SGN(X) =0 THENPRINT "ZERO"

40 IF SGN(X) = -1 THEN PRINT "NEGATIVE"
50 GOTO 10

]

ABS tells you the absolute value of a number (the magnitude of a number without respect
to its sign). Its syntax is:

ABS(number)
As an example of ABS, run this program:

10 INPUT "TYPE A NUMBER'"; N
20 PRINT "ABSOLUTE VALUE IS' ABS(N)
30 G6O0TO 1@

Trigonometry Functions
(The SIN, COS, TAN, and ATN Functions)

The next group of functions calculate trigonometry operations (calculating unknown sides and
angles of a triangle). They are the SIN, COS, LOG, and EXP functions.

SIN calculates the sine of an angle. lts syntax is:

SIN (angle)
angle is the angle's size in radians.

COS calculates the cosine of a triangle. Its syntax is:

COS (angle)
angle is angle's size in radians.

TAN calculates the tangent of an angle. lts syntax is:
TAN (angle)
angle is angle’s size in radians.
ATN calculates the arctangent of a triangle. lts syntax is:

ATN (angle)
angle is angle's size in radians.

The following trignometry programs use SIN, COS, TAN, and ATN to calculate unknown sides
and angles of a triangle. You can use these programs for many practical applications, and
you do not have to understand trigonometry to use them.

One practical application of these programs is building. For example, if you are building a
stairway, you can use these programs to calculate the slope and height of the stairs.

202

36 / Numbers

Each program uses the labels SA, SB, SC, AA, AB, and AC to label the sides and angles
of a triangle, as shown in this illustration.

AB

SC
SA

AA AC
SB

The first program has you enter Side AC and Angles AA and AB. It then uses SIN to calculate

Sides SA and SB.
5 CLS
10 INPUT "WHAT IS ANGLE AA (IN DEGREES)'; AA:
IF AA<=90 OR AA>=180 THEN 1900
20 INPUT "WHAT IS ANGLE AB (IN DEGREES)'; AB:
IF AA <=9 OR AB >=180 THEN 109
30 INPUT "WHAT IS SIDE SC (SC)'; SC:
IF SC<=0 THEN 100
40 AC=180-(AA+AB) 'VALUE OF ANGLE AC
50 IF (AA+AB+AC) <> 189 THEN 1090
'"TRIANGLE=180® DEGREES
60 AA=AA/57.29577951: AB=AB/57.29577951:
AC=AC/57.29577951
'"CONVERT DEGREES TO RADIANS
70 SA=(SINCAA))/(SINCAC))*SC: IF SA<® THEN 100
80 SB=(SIN(AB))/(SINCAC))*SC: IF SB<® THEN 100
1] PRINT ""SIDE SA (SA) IS'" SA "LONG": PRINT "SIDE SB
(SB) IS' SB "LONG": GOTO 10
100 PRINT "SORRY, NOT A TRIANGLE, TRY AGAIN": GOTO 10
The second program has you enter Sides SA and SB and Angle AC. It then uses COS to
calculate Side SC.
5 CLS
10 INPUT “"WHAT IS ANGLE C (AC)''; AC: IF AC<® OR AC>180
THEN 1090
20 AC=AC/57.29577951: 'CONVERT DEGREES TO RADIANS
30 INPUT "WHAT IS SIDE A (SA)'"; SA:IF SA<=9¢ THEN 100
40 INPUT "WHAT IS SIDE B (SB)'"; SB:IF SB=<@® THEN 100
5@ SC=((SA12)+(SB12))-(2*(SA*SB*COS(AC))): IF SC<9
THEN 100
60 PRINT "SIDE C (SC) IS'" SQR(SC) "LONG": GOTO 10
100 PRINT ""SORRY, NOT A TRIANGLE, TRY AGAIN'": GOTO 10
The third program has you enter Side SB and Angle AA. (Angle AC must be 90 degrees.)
It then uses TAN to calculate Side SA.
5 CLS
10 INPUT "WHAT IS SIDE B (SB)'"; SB: IF SB<=0 THEN 100
20 INPUT "WHAT IS ANGLE A (AA)'"; AA: IF AA<=0 OR
AA>=180 THEN 100
39 AA=AA/57.29577951 "CONVERT DEGREES TO RADIANS
49 SA=SB*(TAN(AA)): IF SA<=0 THEN 100
50 PRINT "SIDE A (SA) IS" SA "LONG": GOTO 190
18® PRINT "SORRY, NOT A TRIANGLE, TRY AGAIN": GOTO 19

203

36 / Numbers

The fourth program has you enter Sides SA and SC and Angle AB. It then uses TAN and
ATN to calculate Angles AA and AC.

19 CLS

20 INPUT "WHAT IS SIDE A (SA)'"; SA: IF SA<=0 THEN 159

30 INPUT "WHAT IS SIDEC (SC)'"; SC: IF SC<=0¢ THEN 159

49 INPUT "WHAT IS ANGLE B (AB)'; AB: IF AB<=0 OR
AB>=180 THEN 159

5¢ X=(18@-AB): 'AA+AC=180-AB

60 X=X/57.29577951: "CONVERT DEGREES TO RADIANS

70 Y=((SA-SC)/(SA+SC))I*TAN(X/2)

80 Z=ATN(Y)

99 AA=(X/2)+(2)

100 AC=(X/2)-(2)

11@ AA=AA*57.29577951: 'CONVERT RADIANS TO DEGREES

120 AC=AC*57.29577951: 'CONVERT RADIANS TO DEGREES

13¢ PRINT "ANGLE A (AA) IS' AA "DEGREES"

140 PRINT "ANGLE C (AC) IS' AC "DEGREES'": GOTO 20

15¢ PRINT "SORRY, NOT A TRIANGLE, TRY AGAIN'": GOTO 20

The trignometry functions use radians, rather than degrees, to measure an angle. So, each
of the above programs converts degrees to radians and radians to degrees. These are the
formulas we used to make these conversions:

Degrees to Radians: Degrees/57.29577951
Radians to Degrees: Radians*57.29577951

Logarithms and Exponentials
(The LOG and EXP Functions)

The next group of functions let you calculate natural logarithms and natural exponentials of
numbers. They help with higher mathematic operations.

LOG calculates the natural logarithm of a number. Its syntax is:

LOG (number)
number is greater than zero.

The natural logarithm of a number is the power to which 2.718281828 (the base) must be
raised to result in the number. For example, type:

PRINT LOG (8)

The screen displays 2.07944154 (the natural logarithm). This is because 2.718281828 (the
base) must be raised to the 2.07944154 power to result in 8 (the number).

The logarithm of a number is the same as the natural logarithm, except the base does not
have to be 2.718281828; it can be any number. You can also use LOG to calculate the logarithm
of a number by using this formula:

LOG (numben/LOG (base)
For example, type:

PRINT LOG(8)/L0G(2)

204

36 / Numbers

The screen displays 3 (the logarithm). This is because 2 (the base) must be raised to the third
power to result in 8 (the number).

EXP calculates the natural exponential of a number. Its syntax is:

EXP (number)
number is less than 87.3365.

The natural exponential of a number is 2.718281828 raised to that number. For example, type:
PRINT EXP (8) (ENTER)

The screen displays 2980.95799 (the natural exponential). This is because 2.718281828 raised
to the 8th power results in 2980.95799.

Creating Your Own Function
The DEF FN Command

The DEF FN command lets you create or define your own numeric function. Its syntax 1s:

DEF FN name (dummy variables) = formula
name is the name of your function.

dummy variables are the variables that your formula uses.
formula is the operation that your function does.
As an example of DEF FN, type this line:
1@ DEF FNTWO(N)=N=*2

This line defines a function named TWO. The TWO function does a simple operation. It multiplies
any number by 2.

Add these lines to the program:

20 INPUT X
30 PRINT FNTWO(X)
49 GOTO 20

Run the program. Line 30 uses the TWO function to multiply the number you enter by 2.

As another example of DEF FN, consider a math operation that you had to do earlier in this
chapter’s trigonometry programs, converting between degrees and radians. With DEF FN,
you can define and use your own function that does the conversion.

Try doing this in the first trigonometry program (the program that uses SIN to calculate Sides
SA and SB). Add Line 7 to define the conversion function. Then change Line 60 to use the
conversion function.

7?7 DEF FNR(X)=X/57.29577951
60 AA=FNRC(AA): AB=FNR(AB): AC=FNR(AC)

Note that whenever you use DEF FN, be sure to define a function before using it. Otherwise,
a ?UF ERROR (Undefined Function Error) occurs.

205

36 / Numbers

DO-IT-YOURSELF PROGRAM 36-1
Use DEF FN to:

1. Convert radians to degrees.
2. Create a math function that cubes numbers.

A quick reference table of many useful mathematical formulas (plane geometry, trig, and
algebra) is in ““*Odds and Ends."”

Learned in Chapter 36
COMMAND FUNCTIONS

DEF FN SQR
SIN

COs

TAN

ATN

LOG

EXP

FIX

SGN

ABS

206

37 /| STRINGS

This chapter lists three functions and one command you can use to manipulate strings.

Displaying Strings of Characters
(The STRINGS$ Function)

The STRINGS$ function lets you create a string of characters. You can produce graphs, tables,
and any other text display. Its syntax is:

STRINGS (length,character)
length is a number from O to 255.

character is either the character enclosed in quotes or the numeric code of the
character. (For the numeric code of each character, see '‘Character Codes."")

As an example of STRINGS$, type:
PRINT STRING$(39,"A'") (ENTER)

The screen displays 30 A’s.

207

37 / Strings

As another example, change the Lines program as follows:

CLS

X$=STRINGS (13,"*")

PRINT @96, X$; "LINES'";X$

9 FOR X=1TO 1000: NEXT X

1¢ PMODE 3,1

15 PCLS

20 SCREEN 1,1

25 LINE (9,0)-(255,191),PSET
30 LINE (0,191)-(255,0),PSET
L9 GOTO 49

~N O W

Line 6 assigns X$ the value STRING$(13,"*"), a string of 13 asterisks.

Line 7 tells the computer to print (starting at Print Screen Location 96) X$, then the word LINES,
followed again by X$ again. (See the Text Screen Worksheet in the Part 7.) Because X$ equals
13 asterisks (*), those characters are printed before and after LINES.

To spruce up the title even more, add these two lines:
8 Y$=STRING$(31,42): PRINT @ 384,Y$%$

This time, you tell the computer to display the character represented by Code 42, which
represents an asterisk.

DO-IT-YOURSELF PROGRAM 37-1
Have you ever written lists to check off jobs that you or other people have to do?

Using STRINGS, write a program that creates a check-off list.

Converting Numbers to Strings
(The STR$ Function)

The STR$ function converts a string to a number. Its syntax is:
STR$(number) Returns a string containing number.
This short program shows how STR$ works:

10 INPUT "TYPE A NUMBER'; N
20 A$=STRS$(N)
30 PRINT A$ + ' IS NOWA STRING"

Searching for Strings
(The INSTR Function)

The INSTR function lets you search through one string for a another string. Its syntax is:
INSTR (position, search-string,target)

position specifies the position in the search-string where the search is to begin
(0 to 255). If you omit position, the computer automatically begins at the first
character.

208

37 / Strings

search-string is the string to be searched.

target is the string for which to search.

INSTR returns a O if any of the following is true:

The position is greater than the number of characters in the search-string.
The search-string is null (contains no characters).

INSTR cannot find the target.

This program shows how INSTR works:

5

10
15
20
25
30
35
40
45

50
55
60

CLEAR 500

cLS

INPUT "SEARCH TEXT';S$

INPUT "TARGET TEXT";T$

C=0: P=1 'P=POSITION
F=INSTR(P,S$,T$)

IF F=0 THEN 60

C=C+1

PRINT LEFTS (S$,F-1)+STRINGSC(LEN(TS), CHR$(128)) +
RIGHTS(SS$, LEN(S$) -F-LEN(T$)+1)
P=F+LENC(TS)

IF P<=LEN(S$)~LENCTS)+1 THEN 39
PRINT "FOUND";C; "OCCURRENCES"

Here is a sample run of the above program. However, you can enter whatever text you need.

SEARCH TEXT? YOU SHOULD TRY TO USE YOUR COLOR COMPUTER

AS MUCH AS POSSIBLE.

TARGET TEXT? CO

YOU SHOULD TRY TO USE YOUR [J[JLOR COMPUTER AS MUCH AS

POSSIBLE. YOU SHOULD TRY TO USE YOUR COLOR [J[IMPUTER AS MUCH AS
POSSIBLE

FOUND 2 OCCURRENCES

0K

This is how the program works:

1. Line 15 assigns S$ (search) the value, YOU SHOULD TRY TO USE YOUR COLOR
COMPUTER AS MUCH AS POSSIBLE.

2. Line 20 assigns T$ (target) the value of CO.

3. Line 30 tells the computer to start searching for T$ at the first position (P) in S$.

4. InLines 45 and 55, INSTR locates T$ and then prints and blocks out T$ (CHR$(128)).
It searches for the next occurrence of T$ and does the same.

5. Line 60 tells the computer to display the number of occurrences of T$ in S$.

DO-IT-YOURSELF PROGRAM 37-2

Write a program that returns the first and second occurrences of the B in ABCDEB.

209

37 / Strings

The following data storage program contains a mailing list of names and addresses. This is
an easy way to store information. Notice that we saved storage space by not putting spaces
between the words. Doing so makes it difficult for you to read, but not for the computer to do so.

Notice also that we assign a leading asterisk (*) to zip codes so the computer doesn’t confuse
them with street numbers.

In this case, we're looking for the names and addresses of all individuals who live in the area
specified by zip code 650 —. Conseqguently *650 is the target (A$).

19 CLEAR 1000

20 CLS

30 A$="x650"

49 X$=""JAMES SMITH,6550HARRISON,DALLASTX*75002:SUE
SIM,RT3,GRAVIOSMO*65084:LYDIA LONG,3445SMITHST,
ASBURYNJ*32044:JOHNGARDNER,BOX6OEDMONTON ALBERTACA"

50 Y$='"KERRY FEWELL,45GMAPLE,NEWORLEANS*89667:BILL
DOLSEIN,6313E121KANSASCITYMO*64134:STEVE HODGES,
RT4FLORENCEME*65088"

6@ Z$=""KAREN CROSS,314HURLEYWASHINGTONDC*10011:ASHER
FITZGERALD,2338HARRISONFTWORTHTX*76101:LIZ DYLAN,
BOX999NEWYORKNY*86866"

So that your computer can search X$, add this line:
70 PRINT INSTR(X$,AS$)
Run the program. Your screen displays:

62
0K

This tells you the string contains a name and address you need.

What about Y$? Edit Line 50 so the computer searches through those addresses. Does it
tell you it found the needed name?

Now, try Z$. Displaying a zero is your computer's way of saying, ‘‘There aren’'t any names
you need on this list."

DO-IT-YOURSELF PROGRAM 37-3
Modify the mailing list program so the following are true:
e X$ contains iwo addresses that have a 650— zip.

* The computer looks for every occurrence of *650, not only for the first.

210

37 / Strings

Replacing Strings
(The MID$ Command)

The MID$ command gives you a powerful string editing capability by letting you replace a
portion of one string with another. The syntax of MID$ is as follows:

MID$ (oldstring position,length) = newstring
oldstring is the variable-name of the string to replace.
position is the number of the position of the first character to be changed.

length is a number of characters to replace. If you omit length, the computer
replaces all of oldstring.

newstring is the string that replaces the specified portion of oldstring.

Note: If newstring has fewer characters than /length specifies, the computer
substitutes all of newstring. newstring is always the same length as oldstring.

As an example of MID$, run this program:

5 CLS

10 AS="KANSAS CITY, MO"
20 MID$(AS$,14)="KS"
30 PRINT AS

Line 10 assigns A$ the value KANSAS CITY, MO. Then Line 20 tells the computer to use
MIDS$ to replace part of the oldstring (A$) with KS, starting at Position 14.

Change Position 14 to 8 and run the program. The result is:
KANSAS KSTY, MO

Now, add the length option to Line 20:
20 MID$(AL,14,2)="KS"

Notice that it doesn't affect the result because newstring and oldstring are both two characters
long. Change length to 1:

20 MIDS$S(A$,14,1)="Ks"
The computer replaces only one character in oldstring, using the first character in KS.

MID$ is doubly effective when used with INSTR. Using the two, you can *'search and destroy"’
text. INSTR searches; MID$ changes, or “‘destroys.” The following program illustrates this:

5 CLS

10 INPUT "ENTER A MONTH AND DAY (MM/DD), ";X$
20 P=INSTR(XS,"/')

30 IF P=0 THEN 10

40 MID$(XS,P,1)=""-"

50 PRINT X$ " IS EASIER TO READ, ISN'T IT?"

In this program, INSTR searches for a slash (/). When it finds one, MID$ replaces it with a
hyphen(-).

211

37 / Strings

Characters and Codes
The ASC and CHR$ Functions

Every character has a numeric value. These numeric values are called ASCII codes. (For you
technical types, ASCII stands for the American Standard Code for Information Interchange.)
This is how the computer works with characters. To see what these values are, look at Table
7.1 in Part 7 of this book. Look up the letter ‘A’. Note that it has a decimal code value of
65. Let's use BASIC's CHRS$ function to print the character that has a value of 65. Type:

PRINT CHR$(65) (ENTER)
The computer prints:

A
The syntax for CHRS is:

CHRS n
Returns the character corresponding to character code n

As you might have already guessed, BASIC has a function for going the other direction as
well. ASC converts a string such as A" to an ASCIi value, in this case 65. Type:

PRINT ASC("A'") (ENTER)
The computer prints:

65
The syntax for ASC is:

ASC (string)
Returns the ASCIl code of the first character in string

Now let's combine ASC and CHRS$ to create a secret message encoder. Qur secret message
encoder will take each letter and move it up to the next leader. ‘A’ becomes ‘B’, ‘B’ becomes
‘C’, on through 'Y’ becoming ‘Z'. What happens to 'Z’? ‘Z’ becomes ‘A'! With this code, the
word CAT becomes DBU, and DOG becomes EPH. Type in:

10 AS=INKEYS:IF A$="" THEN 10:REM WAIT FOR KEY
20 IF AS <"A'" ORAS$ > "Z'" THEN 10:REM ONLY A-2Z

3¢ B=ASC(A$):REM GET ASCII CODE OF KEY PRESSED
49 =B+ 1:REM MOVE UP TO NEXT LETTER

S¢ IFA$="Z" THENB = 65:REM IF 'Z', THE MAKE 'A'
60 PRINT CHRS (B) ;

70 GOTO 10

RUN the program, and type in your secret message. Just for fun, can you figure out how
to make the program print spaces when you press the space bar? Can you write a program
to decode the messages you write?

212

37 / Strings

DO-IT-YOURSELF PROGRAM 37-4

Pretend you worked at a telephone company in the days when telephone exchanges
were being switched from alpha-characters to numeric-characters. Write a program
that uses MID$ to replace all alpha-exchanges with numbers. Be sure to clear enough
string space or you get a ?0S ERROR.

Learned in Chapter 37
COMMAND FUNCTIONS

MID$ STRING$
INSTR
STR$
ASC
CHR$

213

38 / IN AND OUT

Input/output statements let you send data from the keyboard to the computer, from the computer
to the TV, and from the computer to the printer. These functions are primarily used inside
programs to send out data, results and messages.

S e ,)
I || o=l e o]
> s

T
T |

Another Way Of Inputting
(The LINE INPUT Command)

The LINE INPUT command is similar to INPUT, except for these differences:

When the statement executes, the computer does not display a question mark while
awaiting keyboard input.

Each LINE INPUT statement can assign a value to only one variable.
The computer accepls commas and quotation marks as part of the string input.

Leading blanks, rather than being ignored, become part of the string variable.

Its syntax is:

LINE INPUT “prompt’ string variable

prompt is the prompting message.

string variable is the name assigned to the line that is input from the keyboard.

With LINE INPUT, you can enter string data without worrying about accidentally including
delimiters such as commas, quotation marks, and colons. The computer accepts everything.
In fact, some situations require that you enter commas, quotation marks, and leading blanks
as part of the data.

Examples:

LINE INPUT X$ (ENTER)

215

38 / In and Out

This command lets you enter X3 without displaying any prompt.
LINE INPUT "LAST NAME, FIRST NAME?"; N$(ENTER)

This command displays the prompt “LAST NAME, FIRST NAME?" and enters data. Commas
do not terminate the input string. Notice that the prompt includes the question mark and the
following space.

To understand LINE INPUT better, enter and run the following program:

19 CLEAR 3¢0: CLS

20 PRINT "LINE INPUT STATEMENT": PRINT

30 PRINT:PRINT "*%xx ENTER TEXT *%»*"

49 'x%xx GET STRING, THEN PRINT IT %%+

50 A$="" 'SET A$ TO NULL STRING

60 LINE INPUT "==>'";A$%

70 IF A$=""" THEN END "IF ENTER PRESSED WITHOUT TYPING ANYTHING,

STOP!
80 PRINT A%
9¢ GOTO 5¢

Customized Printing
(The PRINT USING Command)

The PRINT USING command lets you display strings and numbers in a "'customized’ format.
This can be especially useful for accounting reports, checks, tables, graphs, or other output
that requires a specific print format.

Here is PRINT USING's syntax:
PRINT USING formatitem-list

formatis a string expression that tells the computer the format to use in printing each
item in item-list. It consists of field specifiers and other characters and is one (or one
set).

item-list is the data to be formatted.

Note: PRINT USING does not automatically print leading and trailing blanks around
numbers. It prints them only as you indicate in format.

You can use the following field specifiers as part of format.

$$ -

, teg Mt
v + !

$ %

216

38 / In and Out

The following explains each field specifier, and includes examples of its use.

#

*w

A number sign specifies the position of each digit in the number you enter. The number
signs establish the length of the numeric field.

If the field is larger than the number, the computer displays the unused positions
to the left of the number as spaces and those to the right as zeros.

PRINT USING "#H####";66.2(ENTER)
66

If the field is too small for the number, the computer displays the number with a leading
% sign.

PRINT USING "#'; 66.2(ENTER)
%66

A period specifies the position of the decimal point in the number you enter. You
can place the decimal point at any field location that you established with the number
sign. The computer automatically rounds off any digits to the right of the decimal
point that don't fit into the field.

PRINT USING "#.#'";66.25(ENTER

%66.3

PRINT USING "##.#";58.76(ENTER)
58.8

PRINT USING "H#H.## ";10.2,5.3,

66.789, .23 4(ENTER)
10.209 5.39 66.79 0.23

Note: Inthe last example, format contains three spaces after the final number
sign. These spaces separate the numbers when the computer displays them.

The comma, when placed in any position between the first digit and the decimal
point, displays a comma to the left of every third digit. The comma establishes an
additional position in your numeric field. To avoid an overflow (indicated by a leading
percent sign), place a comma at every third position in the numeric field. Overflows
occur when the field isn't large enough.

PRINT USING "HHEHKHHHKRH,"; 12345678
12,345,678

PRINT USING "HHHEHHNKRHN,"; 123456789
%123,456,789

PRINT USING "H#HH# HHH ##H#"; 123456789
123,456,789

When you place two asterisks at the beginning of the numeric field, the computer
fills all unused positions to the left of the decimal with asterisks. The two asterisks
establish two more positions in the numeric field.

PRINT USING "*xH#H##H"; 44 .0
xkkkb 4

When you place a dollar sign ahead of the numeric field, the computer places a dollar
sign ahead of the number when displaying it. This, of course, is handy wh<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>